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n p p FA C* F There is good reason for the tradition that students of science and
engineering start college physics with the study of mechanics:
mechanics is the cornerstone of pure and applied science. The
concept of energy, for example, is essential for the study of the
evolution of the universe, the properties of elementary particles,
and the mechanisms of biochemical reactions. The concept of
energy is also essential to the design of a cardiac pacemaker and
to the analysis of the limits of growth of industrial society. How-
ever, there are difficulties in presenting an introductory course in
mechanics which is both exciting and intellectually rewarding.
Mechanics is a mature science and a satisfying discussion of its
principles is easily lost in a superficial treatment. At the other
extreme, attempts to "enrich" the subject by emphasizing
advanced topics can produce a false sophistication which empha-
sizes technique rather than understanding.

This text was developed from a first-year course which we taught
fora number of years at the Massachusetts Institute of Technology
and, earlier, at Harvard University. We have tried to present
mechanics in an engaging form which offers a strong base for
future work in pure and applied science. Our approach departs
from tradition more in depth and style than in the choice of topics;
nevertheless, it reflects a view of mechanics held by twentieth-
century physicists.

Our book is written primarily for students who come to the course
knowing some calculus, enough to differentiate and integrate sim-
ple functions.1 It has also been used successfully in courses
requiring only concurrent registration in calculus. (For a course
of this nature, Chapter 1 should be treated as a resource chapter,
deferring the detailed discussion of vector kinematics for a time.
Other suggestions are listed in To The Teacher.) Our experi-
ence has been that the principal source of difficulty for most stu-
dents is in learning how to apply mathematics to physical problems,
not with mathematical techniques as such. The elements of cal-
culus can be mastered relatively easily, but the development of
problem-solving ability requires careful guidance. We have pro-
vided numerous worked examples throughout the text to help
supply this guidance. Some of the examples, particularly in the
early chapters, are essentially pedagogical. Many examples, how-
ever, illustrate principles and techniques by application to prob-
lems of real physical interest.

The first chapter is a mathematical introduction, chiefly on vec-
tors and kinematics. The concept of rate of change of a vector,
1 The background provided in "Quick Calculus" by Daniel Kleppner and Norman
Ramsey, John Wiley & Sons, New York, 1965, is adequate.
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probably the most difficult mathematical concept in the text,
plays an important role throughout mechanics. Consequently,
this topic is developed with care, both analytically and geometrically.
The geometrical approach, in particular, later proves to be invalu-
able for visualizing the dynamics of angular momentum.

Chapter 2 discusses inertial systems, Newton's laws, and some
common forces. Much of the discussion centers on applying New-
ton's laws, since analyzing even simple problems according to
general principles can be a challenging task at first. Visualizing
a complex system in terms of its essentials, selecting suitable
inertial coordinates, and distinguishing between forces and accel-
erations are all acquired skills. The numerous illustrative exam-
ples in the text have been carefully chosen to help develop these
skills.

Momentum and energy are developed in the following two chap-
ters. Chapter 3, on momentum, applies Newton's laws to extended
systems. Students frequently become confused when they try to
apply momentum considerations to rockets and other systems
involving flow of mass. Our approach is to apply a differential
method to a system defined so that no mass crosses its boundary
during the chosen time interval. This ensures that no contribution
to the total momentum is overlooked. The chapter concludes with
a discussion of momentum flux. Chapter 4, on energy, develops
the work-energy theorem and its application to conservative and
nonconservative forces. The conservation laws for momentum
and energy are illustrated by a discussion of collision problems.

Chapter 5 deals with some mathematical aspects of conservative
forces and potential energy; this material is not needed elsewhere
in the text, but it will be of interest to students who want a mathe-
matically complete treatment of the subject.

Students usually find it difficult to grasp the properties of angular
momentum and rigid body motion, partly because rotational motion
lies so far from their experience that they cannot rely on intuition.
As a result, introductory texts often slight these topics, despite
their importance. We have found that rotational motion can be
made understandable by emphasizing physical reasoning rather
than mathematical formalism, by appealing to geometric argu-
ments, and by providing numerous worked examples. In Chapter
6 angular momentum is introduced, and the dynamics of fixed
axis rotation is treated. Chapter 7 develops the important features
of rigid body motion by applying vector arguments to systems
dominated by spin angular momentum. An elementary treatment
of general rigid body motion is presented in the last sections of
Chapter 7 to show how Euler's equations can be developed from
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simple physical arguments. This more advanced material is
optional however; we do not usually treat it in our own course.

Chapter 8, on noninertial coordinate systems, completes the
development of the principles of newtonian mechanics. Up to
this point in the text, inertial systems have been used exclusively
in order to avoid confusion between forces and accelerations.
Our discussion of noninertial systems emphasizes their value as
computational tools and their implications for the foundations of
mechanics.

Chapters 9 and 10 treat central force motion and the harmonic
oscillator, respectively. Although no new physical concepts are
involved, these chapters illustrate the application of the principles
of mechanics to topics of general interest and importance in phy-
sics. Much of the algebraic complexity of the harmonic oscillator
is avoided by focusing the discussion on energy, and by using sim-
ple approximations.

Chapters 11 through 14 present a discussion of the principles of
special relativity and some of its applications. We attempt to
emphasize the harmony between relativistic and classical thought,
believing, for example, that it is more valuable to show how the
classical conservation laws are unified in relativity than to dwell
at length on the so-called "paradoxes." Our treatment is con-
cise and minimizes algebraic complexities. Chapter 14 shows how
ideas of symmetry play a fundamental role in the formulation of
relativity. Although we have kept the beginning students in mind,
the concepts here are more subtle than in the previous chapters.
Chapter 14 can be omitted if desired; but by illustrating how sym-
metry bears on the principles of mechanics, it offers an exciting
mode of thought and a powerful new tool.

Physics cannot be learned passively; there is absolutely no sub-
stitute for tackling challenging problems. Here is where students
gain the sense of satisfaction and involvement produced by a
genuine understanding of the principles of physics. The collec-
tion of problems in this book was developed over many years of
classroom use. A few problems are straightforward and intended
for drill; most emphasize basic principles and require serious
thought and effort. We have tried to choose problems which
make this effort worthwhile in the spirit of Piet Hein's aphorism

Problems worthy
of attack

prove their worth
by hitting back1

1 From Grooks I, by Piet Hein, copyrighted 1966, The M.I.T. Press.
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TO
THE

The first eight chapters form a comprehensive introduction to
classical mechanics and constitute the heart of a one-semester
course. In a 12-week semester, we have generally covered the
first 8 chapters and parts of Chapters 9 or 10. However, Chapter
5 and some of the advanced topics in Chapters 7 and 8 are usually
omitted, although some students pursue them independently.

| F/l f̂  H FR Chapters 11,12, and 13 present a complete introduction to special
relativity. Chapter 14, on transformation theory and four-vectors,
provides deeper insight into the subject for interested students.
We have used the chapters on relativity in a three-week short
course and also as part of the second-term course in electricity and
magnetism.

The problems at the end of each chapter are generally graded
in difficulty. They are also cumulative; concepts and techniques
from earlier chapters are repeatedly called upon in later sections
of the book. The hope is that by the end of the course the student
will have developed a good intuition for tackling new problems,
that he will be able to make an intelligent estimate, for instance,
about whether to start from the momentum approach or from the
energy approach, and that he will know how to set off on a new
tack if his first approach is unsuccessful. Many students report
a deep sense of satisfaction from acquiring these skills.

Many of the problems require a symbolic rather than a numerical
solution. This is not meant to minimize the importance of numeri-
cal work but to reinforce the habit of analyzing problems symboli-
cally. Answers are given to some problems; in others, a numerical
"answer clue" is provided to allow the student to check his sym-
bolic result. Some of the problems are challenging and require
serious thought and discussion. Since too many such problems
at once can result in frustration, each assignment should have a
mix of easier and harder problems.

Chapter 1 Although we would prefer to start a course in mechan-
ics by discussing physics rather than mathematics, there are real
advantages to devoting the first few lectures to the mathematics
of motion. The concepts of kinematics are straightforward for
the most part, and it is helpful to have them clearly in hand
before tackling the much subtler problems presented by new-
tonian dynamics in Chapter 2. A departure from tradition in this
chapter is the discussion of kinematics using polar coordinates.
Many students find this topic troublesome at first, requiring serious
effort. However, we feel that the effort will be amply rewarded.
In the first place, by being able to use polar coordinates freely,
the kinematics of rotational motion are much easier to understand;
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the mystery of radial acceleration disappears. More important,
this topic gives valuable insights into the nature of a time-varying
vector, insights which not only simplify the dynamics of particle
motion in Chapter 2 but which are invaluable to the discussion of
momentum flux in Chapter 3, angular momentum in Chapters 6
and 7, and the use of noninertial coordinates in Chapter 8. Thus,
the effort put into understanding the nature of time-varying vectors
in Chapter 1 pays important dividends throughout the course.

If the course is intended for students who are concurrently begin-
ning their study of calculus, we recommend that parts of Chapter 1
be deferred. Chapter 2 can be started after having covered only
the first six sections of Chapter 1. Starting with Example 2.5, the
kinematics of rotational motion are needed; at this point the ideas
presented in Section 1.9 should be introduced. Section 1.7, on the
integration of vectors, can be postponed until the class has become
familiar with integrals. Occasional examples and problems involv-
ing integration will have to be omitted until that time. Section 1.8,
on the geometric interpretation of vector differentiation, is essen-
tial preparation for Chapters 6 and 7 but need not be discussed
earlier.

Chapter 2 The material in Chapter 2 often represents the stu-
dent's first serious attempt to apply abstract principles to con-
crete situations. Newton's laws of motion are not self-evident;
most people unconsciously follow aristotelian thought. We find
that after an initial period of uncertainty, students become accus-
tomed to analyzing problems according to principles rather than
vague intuition. A common source of difficulty at first is to con-
fuse force and acceleration. We therefore emphasize the use of
inertial systems and recommend strongly that noninertial coor-
dinate systems be reserved until Chapter 8, where their correct
use is discussed. In particular, the use of centrifugal force in
the early chapters can lead to endless confusion between inertial
and noninertial systems and, in any case, it is not adequate for the
analysis of motion in rotating coordinate systems.

Chapters 3 and 4 There are many different ways to derive the
rocket equations. However, rocket problems are not the only
ones in which there is a mass flow, so that it is important to adopt
a method which is easily generalized. It is also desirable that the
method be in harmony with the laws of conservation of momentum
or, to put it more crudely, that there is no swindle involved. The
differential approach used in Section 3.5 was developed to meet
these requirements. The approach may not be elegant, but it is
straightforward and quite general.
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In Chapter 4, we attempt to emphasize the general nature of
the work-energy theorem and the difference between conserva-
tive and nonconservative forces. Although the line integral is
introduced and explained, only simple line integrals need to be
evaluated, and general computational techniques should not be
given undue attention.

Chapter 5 This chapter completes the discussion of energy and
provides a useful introduction to potential theory and vector cal-
culus. However, it is relatively advanced and will appeal only to
students with an appetite for mathematics. The results are not
needed elsewhere in the text, and we recommend leaving this
chapter for optional use, or as a special topic.

Chapters 6 and 7 Most students find that angular momentum is
the most difficult physical concept in elementary mechanics. The
major conceptual hurdle is visualizing the vector properties of
angular momentum. We therefore emphasize the vector nature
of angular momentum repeatedly throughout these chapters. In
particular, many features of rigid body motion can be understood
intuitively by relying on the understanding of time-varying vectors
developed in earlier chapters. It is more profitable to emphasize
the qualitative features of rigid body motion than formal aspects
such as the tensor of inertia. If desired, these qualitative argu-
ments can be pressed quite far, as in the analysis of gyroscopic
nutation in Note 7.2. The elementary discussion of Euler's equa-
tions in Section 7.7 is intended as optional reading only. Although
Chapters 6 and 7 require hard work, many students develop a phy-
sical insight into angular momentum and rigid body motion which
is seldom gained at the introductory level and which is often
obscured by mathematics in advanced courses.

Chapter 8 The subject of noninertial systems offers a natural
springboard to such speculative and interesting topics as trans-
formation theory and the principle of equivalence. From a more
practical point of view, the use of noninertial systems is an impor-
tant technique for solving many physical problems.

Chapters 9 and 10 In these chapters the principles developed
earlier are applied to two important problems, central force motion
and the harmonic oscillator. Although both topics are generally
treated rather formally, we have tried to simplify the mathematical
development. The discussion of central force motion relies heavily
on the conservation laws and on energy diagrams. The treatment
of the harmonic oscillator sidesteps much of the usual algebraic
complexity by focusing on the lightly damped oscillator. Applica-
tions and examples play an important role in both chapters.
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Chapters 11 to 14 Special relativity offers an exciting change of
pace to a course in mechanics. Our approach attempts to empha-
size the connection of relativity with classical thought. We have
used the Michelson-Morley experiment to motivate the discussion.
Although the prominence of this experiment in Einstein's thought
has been much exaggerated, this approach has the advantage of
grounding the discussion on a real experiment.

We have tried to focus on the ideas of events- and their trans-
formations without emphasizing computational aids such as dia-
grammatic methods. This approach allows us to deemphasize
many of the so-called paradoxes.

For many students, the real mystery of relativity lies not in the
postulates or transformation laws but in why transformation prin-
ciples should suddenly become the fundamental concept for gen-
erating new physical laws. This touches on the deepest and most
provocative aspects of Einstein's thought. Chapter 14, on four-
vectors, provides an introduction to transformation theory which
unifies and summarizes the preceding development. The chapter
is intended to be optional.

Daniel Kleppner
Robert J. Kolenkow
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VECTORS AND KINEMATICS—A FEW MATHEMATICAL PRELIMINARIES

1.1 Introduction

The goal of this book is to help you acquire a deep understanding
of the principles of mechanics. The subject of mechanics is at
the very heart of physics; its concepts are essential for under-
standing the everyday physical world as well as phenomena on the
atomic and cosmic scales. The concepts of mechanics, such as
momentum, angular momentum, and energy, play a vital role in
practically every area of physics.

We shall use mathematics frequently in our discussion of
physical principles, since mathematics lets us express complicated
ideas quickly and transparently, and it often points the way to new
insights. Furthermore, the interplay of theory and experiment in
physics is based on quantitative prediction and measurement.
For these reasons, we shall devote this chapter to developing some
necessary mathematical tools and postpone our discussion of the
principles of mechanics Until Chap. 2.

1.2 Vectors

The study of vectors provides a good introduction to the role of
mathematics in physics. By using vector notation, physical laws
can often be written in compact and simple form. (As a matter
of fact, modern vector notation was invented by a physicist,
Willard Gibbs of Yale University, primarily to simplify the appear-
ance of equations.) For example, here is how Newton's second
law (which we shall discuss in the next chapter) appears in
nineteenth century notation:

Fx = max

Fy = mCLy

Fz = maz.

In vector notation, one simply writes

F = ma.

Our principal motivation for introducing vectors is to simplify the
form of equations. However, as we shall see in the last chapter
of the book, vectors have a much deeper significance. Vectors
are closely related to the fundamental ideas of symmetry and
their use can lead to valuable insights into the possible forms of
unknown laws.
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Definition of a Vector

Vectors can be approached from three points of view—geometric,
analytic, and axiomatic. Although all three points of view are use-
ful, we shall need only the geometric and analytic approaches in
our discussion of mechanics.

From the geometric point of view, a vector is a directed line
segment. In writing, we can represent a vector by an arrow and
label it with a letter capped by a symbolic arrow. In print, bold-
faced letters are traditionally used.

In order to describe a vector we must specify both its length and
its direction. Unless indicated otherwise, we shall assume that
parallel translation does not change a vector. Thus the arrows
at left all represent the same vector.

If two vectors have the same length and the same direction
they are equal. The vectors B and C are equal:

B = C.

The length of a vector is called its magnitude. The magnitude
of a vector is indicated by vertical bars or, if no confusion will occur,
by using italics. For example, the magnitude of A is written |A|,
or simply A. If the length of A is V 7 , then |A| = A = V2.

If the length of a vector is one unit, we call it a unit vector. A
unit vector is labeled by a caret; the vector of unit length parallel
to A is A. It follows that

A
A = w '
and conversely

A = |A|A.

C=bA

r -A

The Algebra of Vectors

Multiplication of a Vector by a Scalar If we multiply A by a positive
scalar b, the result is a new vector C = 6A. The vector C is
parallel to A, and its length is b times greater. Thus t = A, and

The result of multiplying a vector by — 1 is a new vector opposite
in direction (antiparallel) to the original vector.

Multiplication of a vector by a negative scalar evidently can
change both the magnitude and the direction sense.
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A + B

Addition of Two Vectors Addition of vectors has the simple geo-
metrical interpretation shown by the drawing.

The rule is: To add B to A, place the tail of B at the head of A.
The sum is a vector from the tail of A to the head of B.

Subtraction of Two Vectors Since A — B = A + ( —B), in order to
subtract B from A we can simply multiply it by —1 and then add.
The sketches below show how.

A+(-B)=A-B A B

An equivalent way to construct A — B is to place the head of B
at the head of A. Then A — B extends from the tail of A to the
tail of B, as shown in the right hand drawing above.

It is not difficult to prove the following laws. We give a geo-
metrical proof of the commutative law; try to cook up your own
proofs of the others.

A + B = B + A
A + (B + C) = (A + B) + C

c(dA) = (cd)A
(c + d)A = cA + dk
c(A + B) = cA + cB

Commutative law

Associative law

Distributive law

Proof of the Commutative law of vector addition

A

A + B

Although there is no great mystery to addition, subtraction,
and multiplication of a vector by a scalar, the result of "multiply-
ing" one vector by another is somewhat less apparent. Does
multiplication yield a vector, a scalar, or some other quantity?
The choice is up to us, and we shall define two types of products
which are useful in our applications to physics.
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Projection of
Bon A

Scalar Product ("Dot" Product) The first type of product is called
the scalar product, since it represents a way of combining two
vectors to form a scalar. The scalar product of A and B is denoted
by A • B and is often called the dot product. A • B is defined by

A- B = |A| |B| cos 0.

Here 0 is the angle between A and B when they are drawn tail to
tail.

Since |B| cos 0 is the projection of B along the direction of A,
A • B = |A| x (projection of B on A).

Similarly,

A • B = |B| x (projection of A on B).

If A • B = 0, then |A| = 0 or |B| = 0, or A is perpendicular to
B (that is, cos 0 = 0). Scalar multiplication is unusual in that the
dot product of two nonzero vectors can be 0.

Note that A • A = |A|2.
By way of demonstrating the usefulness of the dot product, here

is an almost trivial proof of the law of cosines.

e

Example 1.1 Law of Cosines

C = A + B

C • C = (A + B) • (A + B)

|C|2 = |A|2 + |B|2 + 2|A| |B|cos0

This result is generally expressed in terms of the angle

C2 = A2 + B2 -2ABcos<t>.

(We have used cos 0 = cos (ir — <f>) = —cos <f>.)

Example 1.2 Work and the Dot Product

The dot product finds its most important application in the discussion of
work and energy in Chap. 4. As you may already know, the work W done
by a force F on an object is the displacement d of the object times the
component of F along the direction of d. If the force is applied at an
angle 0 to the displacement,

W = (F cos 6)d.

Granting for the time being that force and displacement are vectors,

W = F . d.
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(A is into paper)

A

Vector Product ("Cross" Product) The second type of product we
need is the vector product. In this case, two vectors A and B are
combined to form a third vector C. The symbol for vector product
is a cross:

C = A X B.

An alternative name is the cross product
The vector product is more complicated than the scalar product

because we have to specify both the magnitude and direction of
A x B. The magnitude is defined as follows: if

C = A X B,

then

|C| = |A| |B| sin 6,

where 6 is the angle between A and B when they are drawn tail to
tail. (To eliminate ambiguity, 6 is always taken as the angle
smaller than T.) Note that the vector product is zero when 0 = 0
orx, even if |A| and |B{ are not zero.

When we draw A and B tail to tail, they determine a plane. We
define the direction of C to be perpendicular to the plane of A
and B. A, B, and C form what is called a right hand triple. Imag-
ine a right hand coordinate system with A and B in the xy plane as
shown in the sketch. A lies on the x axis and B lies toward the
y axis. If A, B, and C form a right hand triple, then C lies on the
z axis. We shall always use right hand coordinate systems such as
the one shown at left. Here is another way to determine the
direction of the cross product. Think of a right hand screw with
the axis perpendicular to A and B. Rotate it in the direction which
swings A into B. C lies in the direction the screw advances.
(Warning: Be sure not to use a left hand screw. Fortunately,
they are rare. Hot water faucets are among the chief offenders;
your honest everyday wood screw is right handed.)

A result of our definition of the cross product is that

B x A = - A x B.

Here we have a case in which the order of multiplication is impor-
tant. The vector product is not commutative. (In fact, since
reversing the order reverses the sign, it is anticommutative.)
We see that

A x A = 0

for any vector A.
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Example 1.3 Examples of the Vector Product in Physics

The vector product has a multitude of applications in physics. For
instance, if you have learned about the interaction of a charged particle
with a magnetic field, you know that the force is proportional to the charge
q, the magnetic field B, and the velocity of the particle v. The force
varies as the sine of the angle between v and B, and is perpendicular to
the plane formed by v and B, in the direction indicated. A simpler way
to give all these rules is

F = qv X B.

Another application is the definition of torque. We shall develop this
idea later. For now we simply mention in passing that the torque T is
defined by

x = r X Ff

where r is a vector from the axis about which the torque is evaluated to
the point of application of the force F. This definition is consistent with
the familiar idea that torque is a measure of the ability of an applied force
to produce a twist. Note that a large force directed parallel to r produces
no twist; it merely pulls. Only F sin 0, the component of force perpen-
dicular to rf produces a torque. The torque increases as the lever arm
gets larger. As you will see in Chap. 6, it is extremely useful to associate
a direction with torque. The natural direction is along the axis of rotation
which the torque tends to produce. All these ideas are summarized in a
nutshell by the simple equation T = r X F.

F sind

Top view

D sin 0

Example 1.4 Area as a Vector

We can use the cross product to describe an area. Usually one thinks
of area in terms of magnitude only. However, many applications in

y physics require that we also specify the orientation of the area. For
/ example, if we wish to calculate the rate at which water in a stream flows

/ through a wire loop of given area, it obviously makes a difference whether
/ the plane of the loop is perpendicular or parallel to the flow. (In the latter

^ / case the flow through the loop is zero.) Here is how the vector product
accomplishes this:

Consider the area of a quadrilateral formed by two vectors, C and D.
The area of the parallelogram A is given by

.4 = base X height

= CD sin 0

= |CXD|.

If we think of A as a vector, we have

A = C X D.
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We have already shown that the magnitude of A is the area of the
parallelogram, and the vector product defines the convention for assigning
a direction to the area. The direction is defined to be perpendicular to
the plane of the area; that is, the direction is parallel to a normal to the
surface. The sign of the direction is to some extent arbitrary; we could
just as well have defined the area by A = D X C. However, once the
sign is chosen, it is unique.

1.3 Components of a Vector

The fact that we have discussed vectors without introducing a
particular coordinate system shows why vectors are so useful;
vector operations are defined without reference to coordinate
systems. However, eventually we have to translate our results
from the abstract to the concrete, and at this point we have to
choose a coordinate system in which to work.

For simplicity, let us restrict ourselves to a two-dimensional
system, the familiar xy plane. The diagram shows a vector A in
the xy plane. The projections of A along the two coordinate
axes are called the components of A. The components of A along
the x and y axes are, respectively, Ax and Ay. The magnitude of
A is |A| = (Ax

2 + Ay
2)*, and the direction of A is such that it

makes an angle 6 = arctan (Ay/Ax) with the x axis.
Since the components of a vector define it, we can specify a

vector entirely by its components. Thus

A = (Ax,Ay)

or, more generally, in three dimensions,

A = (AXfAyfAz).

Prove for yourself that |A| = (Ax
2 + Ay

2 + A2)K The vector A
has a meaning independent of any coordinate system. However,
the components of A depend on the coordinate system being used.
To illustrate this, here is a vector A drawn in two different coordi-
nate systems. In the first case,

A = 04,0) (x,y system),

while in the second

A = (0,-^L) (x',yf system).

Unless noted otherwise, we shall restrict ourselves to a single
coordinate system, so that if

A = B,
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then

Ax = Bx Ay = By Az = Bz.

The single vector equation A = B symbolically represents three
scalar equations.

All vector operations can be written as equations for com-
ponents. For instance, multiplication by a scalar gives

cA = (cAx,cAv).

The law for vector addition is

A + B = (Ax + Bx, Ay + By, Az + Bz).

By writing A and B as the sums of vectors along each of the
coordinate axes, you can verify that

A • B = AXBX + AyBy + AZBZ.

We shall defer evaluating the cross product until the next section.

Example 1.5 Vector Algebra

Let

A = (3,5,-7)

B = (2,7,1).

Find A +
A and B.

A + B =

A - B =

=

|A| =

=

=

|B| =

=

cos (A.B) —

B, A - B, |A|, |B|, A- B, ancj

(3 + 2, 5 + 7, - 7 + 1)
(5,12, - 6 )

(3 - 2, 5 - 7, - 7 - 1)

(1,-2,-8)
(32 _|_ 52 _|_ 7 2 ) |

V83
9.11

(22 + 72 + l2)^

V54
7.35

34

A - B 34
- 0.507

|A| |B| (9.11X7.35)
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Example 1.6 Construction of a Perpendicular Vector

Find a unit vector in the xy plane which is perpendicular to A = (3,5,1).
We denote the vector by B = (Bx,By,Bz). Since B is in the xy plane,

Bz = 0. For B to be perpendicular to A, we have A • B = 0.

A • B = 3BX+ 5By

= 0

Hence By = —f#x. However, B is a unit vector, which means that
Bx

2_+ By2 = 1. Combining these gives Bx
2 + ^Bx

2 = 1, or Bx =
V f f = ±0.857 and Bv = - f £ x = +0.514.

The ambiguity in sign of Bx and By indicates that B can point along a
line perpendicular to A in either of two directions.

1.4 Base Vectors

Base vectors are a set of orthogonal (perpendicular) unit vectors,
one for each dimension. For example, if we are dealing with the
familiar cartesian coordinate system of three dimensions, the base
vectors lie along the x, y, and z axes. The x unit vector is denoted
by i, the y unit vector by j , and the z unit vector by k.

The base vectors have the following properties, as you can
readily verify:

f. j = j . k = k • i = 0

r x j = k

i x k = i

k x i = j .

We can write any vector in terms of the base vectors.

A = Ax\ + Ay] + Azk

The sketch illustrates these two representations of a vector.
To find the component of a vector in any direction, take the dot

product with a unit vector in that direction. For instance,

A. = A • k.

It is easy to evaluate the vector product A x B with the aid of
the base vectors.

A x B = (AJ + Ay] + AM) X (BJ + By\ + BZV)
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Consider the first term:

AJ x B = AXBXQ X i) + AxBy(\ X j) + AXBZ(\ X k).

( W e h a v e a s s u m e d t h e a s s o c i a t i v e l a w h e r e . ) S i n c e f x f = 0,

\ x j = k, a n d i x k = — j f w e f i n d

4 i X B = Ax(Byk - Bz\).

The same argument applied to the y and z components gives

Ay] x B = Ay(Bz\ - Bjk)
i , k x B = AZ(BX] - By\).

A quick way to derive these relations is to work out the first and
then to obtain the others by cyclically permuting x, y, z, and
i, j , k (that is, x-+y, y—>z, z —> x, and i —»j, j —> k, k —> I.) A
simple way to remember the result is to use the following device:
write the base vectors and the components of A and B as three
rows of a determinant,1 like this

A X B =
I J

Ax Ay
BX By

= \(AyBz - AzBy) - ](AXBZ - AZBX) + k(AxBy - AyBx).

For instance, if A = i + 3j — k and B = 4i + j + 3k, then

A X B
t J k
1 3 - 1
4 1 3

or - 7j - Ilk.

1.5 Displacement and the Position Vector

So far we have discussed only abstract vectors. However, the
reason for introducing vectors here is concrete—they are just
right for describing kinematical laws, the laws governing the
geometrical properties of motion, which we need to begin our dis-
cussion of mechanics. Our first application of vectors will be to
the description of position and motion in familiar three dimen-
sional space. Although our first application of vectors is to the
motion of a point in space, don't conclude that this is the only

1 If you are unfamiliar with simple determinants, most of the books listed at the
end of the chapter discuss determinants.
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5 - -

4 - -

3 —

2 - -

H h

application, or even an unusually important one. Many physical
quantities besides displacements are vectors. Among these are
velocity, force, momentum, and gravitational and electric fields.

To locate the position of a point in space, we start by setting up
a coordinate system. For convenience we choose a three dimen-
sional cartesian system with axes x, y, and z, as shown.

In order to measure position, the axes must be marked off in
some convenient unit of length—meters, for instance.

The position of the point of interest is given by listing the values
of its three coordinates, xi, yi, z\. These numbers do not repre-
sent the components of a vector according to our previous dis-
cussion. (They specify a position, not a magnitude and direction.)
However, if we move the point to some new position, x2, y2t z2,
then the displacement defines a vector S with coordinates Sx = x2

— xi, Sy = y2 — y i t Sz = z2 — zlm

S is a vector from the initial position to the final position—it
defines the displacement of a point of interest. Note, however,
that S contains no information about the initial and final positions
separately—only about the relative position of each. Thus,
Sz = z2 — zi depends on the difference between the final and
initial values of the z coordinates; it does not specify z2 or z\
separately. S is a true vector; although the values of the coordi-
nates of the initial and final points depend on the coordinate sys-
tem, S does not, as the sketches below indicate.

ix2.y2.z2)

(x'2.y'2.z'2)

One way in which our displacement vector differs from a mathe-
matician's vector is that his vectors are usually pure quantities,
with components given by absolute numbers, whereas S has the
physical dimension of length associated with it. We will use
the convention that the magnitude of a vector has dimensions
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P(x,y,z)

so that a unit vector is dimensionless. Thus, a displacement of 8
m (8 meters) in the x direction is S = (8 m, 0, 0). |S| = 8 m, and
§ = S/|S| = i.

Although vectors define displacements rather than positions, it
is in fact possible to describe the position of a point with respect
to the origin of a given coordinate system by a special vector,
known as the position vector, which extends from the origin to the
point of interest. We shall use the symbol r to denote the
position vector. The position of an arbitrary point P at (x,y,z) is
written as

r = (x,y,z) = x) + y) + zk.

Unlike ordinary vectors, r depends on the coordinate system.
The sketch to the left shows position vectors r and r' indicating
the position of the same point in space but drawn in different
coordinate systems. If R is the vector from the origin of the
unprimed coordinate system to the origin of the primed coordi-
nate system, we have

r' = r - R.

In contrast, a true vector, such as a displacement S, is inde-
pendent of coordinate system. As the bottom sketch indicates,

S = r2 - ri

= (rj + R) - (r; + R)
= ri - r',

1.6 Velocity and Acceleration

Motion in One Dimension

Before applying vectors to velocity and acceleration in three
dimensions, it may be helpful to review briefly the case of one
dimension, motion along a straight line.

Let x be the value of the coordinate of a particle moving along a
line, x is measured in some convenient unit, such as meters,
and we assume that we have a continuous record of position
versus time.

The average velocity v of the point between two times, h and t2,
is defined by

v =
x(t2) -

U - h

(We shall often use a bar to indicate an average of a quantity.)
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The instantaneous velocity v is the limit of the average velocity as
the time interval approaches zero.

v = lim
x(t + At) - x(t)

At

The limit we have introduced in defining v is precisely that
involved in the definition of a derivative. In fact, we have1

dx

In a similar fashion, the instantaneous acceleration is

r v(t + At) - v(t)
a = hm

At-+O At

dv
= Jt

The concept of speed is sometimes useful. Speed s is simply the
magnitude of the velocity: « = |v|.

Motion in Several Dimensions

Our task now is to extend the ideas of velocity and acceleration
to several dimensions. Consider a particle moving in a plane. As
time goes on, the particle traces out a path, and we suppose that
we know the particle's coordinates as a function of time. The
instantaneous position of the particle at some time h is

r(ti) = [x(ti),y(td] or = (xlty0,
1 Physicists generally use the Leibnitz notation dx/dt, since this is a handy form
for using differentials (see Note 1.1). Starting in Sec. 1.9 we shall use Newton's
notation x, but only to denote derivatives with respect to time.

Position at time t2

^Position at
time f j
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r(0

y(t + At)(

x(t)

where X\ is the value of x at t = t\, and so forth. At time t2 the
position is

»*2 = (x2fy2).

The displacement of the particle between times h and t2 is

r2 — ri = (x2 - xlt y2 - yi).

We can generalize our example by considering the position at
some time t, and at some later time t + At.f The displacement
of the particle between these times is

_ Ar = r(t + AO - r(t).

This vector equation is equivalent to the two scalar equations

Ax = x(t + At) - x(t)
Ay = y(t + At) - y(t).

The velocity v of the particle as it moves along the path is defined
to be

.. Ar
v = lim —

_dr

- dt'

-x which is equivalent to the two scalar equations

Ax dx
vx = lim — = —

A,_>o AJ dt

vy = lim
Ay _ dy
A£ dt

Extension of the argument to three dimensions is trivial. The
third component of velocity is

z(t + At) - z(t) _ dz
At dt

vz = lim

Our definition of velocity as a vector is a straightforward gen-
eralization of the familiar concept of motion in a straight line.
Vector notation allows us to describe motion in three dimensions
with a single equation, a great economy compared with the three
equations we would need otherwise. The equation v = dr/dt
expresses the results we have just found.

f We will often use the quantity A to denote a difference or change, as in the
case here of Ar and A£. However, this implies nothing about the size of the
quantity, which may be large or small, as we please.
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Alternatively, since r = x\ + y\ + zk, we obtain by simple
differentiation1

dt dx dy A
J

At'" > At" > At'

as before.
Let the particle undergo a displacement Ar in time At. In the

limit At —> 0, Ar becomes tangent to the trajectory, as the sketch
indicates. However, the relation

dx
Ar~TtAt

= vAt,

which becomes exact in the limit At —> 0, shows that v is parallel
to Ar; the instantaneous velocity v of a particle is everywhere
tangent to the trajectory.

Example 1.7 Finding v from r

The position of a particle is given by

r = A(eat\ + e-ar}),

where a is a constant. Find the velocity, and sketch the trajectory.

V =

or

Vx =

*>v =

The

V =

=

dx
dt

A(aeat\ - ae-aij)

-- Aaeat

•- —Aae~at.

magnitude of v is

Aa(e2at + e-2at)K

In sketching the motion of a point, it is usually helpful to look at limiting
cases. At t = 0, we have

v(0) = aAQ - j).

1 Caution: We can neglect the cartesian unit vectors when we differentiate, since
their directions are fixed. Later we shall encounter unit vectors which can change
direction, and then differentiation is more elaborate.
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As t-> oo, e«<-> oo and <ra<-»0. In this limit r-> Aeat\, which is a
vector along the x axis, and v—> aAeat\\ the speed increases without
limit.

Similarly, the acceleration a is defined by

dv = dv* ^ * .
A dt dt3 dt

dt2'

We could continue to form new vectors by taking higher deriva-
tives of rf but we shall see in our study of dynamics that r, v, and a
are of chief interest.

—I

x = r cos wf
- ^

k
1
|

txampie
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\
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Uniform Circular Motion

Circular motion plays an important role in physics. Here we look at the
simplest and most important case—uniform circular motion, which is
circular motion at constant speed.

Consider a particle moving in the xy plane according to r = r(cos cot\ +
sin cotf), where r and co are constants. Find the trajectory, the velocity,
and the acceleration.

\r\ = [r2 cos2 o)t + r2 sin2 ooift

Using the familiar identity sin2 6 + cos2 6 = 1,

\r\ = [r2(cos2 art + sin2 art)]1

= r = constant.

The trajectory is a circle.
The particle moves counterclockwise around the circle, starting from

(r,0) at t = 0. It traverses the circle in a time T such that co!T= 2T.
co is called the angular velocity of the motion and is measured in radians
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per second. T, the time required to execute one complete cycle, is
called the period.

dr
v = —

dt
= ro>(—sin o)t\ + cos utj)

We can show that v is tangent to the trajectory by calculating v • r:

v • r = r2co(—sin o)t cos o)t + cos a>t sin oot)

= 0.

Since v is perpendicular to r, it is tangent to the circle as we expect.
Incidentally, it is easy to show that |v| = rco = constant.

dv
a = —

dt

= rw2[—cos o)tt — sin coQ]

= —co2r

The acceleration is directed radially inward, and is known as the centripetal
acceleration. We shall have more to say about it shortly.

A Word about Dimension and Units

Physicists call the fundamental physical units in which a quantity
is measured the dimension of the quantity. For example, the
dimension of velocity is distance/time and the dimension of
acceleration is velocity/time or (distance/time)/time = distance/
time2. As we shall discuss in Chap. 2, mass, distance, and time
are the fundamental physical units used in mechanics.

To introduce a system of units, we specify the standards of
measurement for mass, distance, and time. Ordinarily we mea-
sure distance in meters and time in seconds. The units of velocity
are then meters per second (m/s) and the units of acceleration
are meters per second2 (m/s2).

The natural unit for measuring angle is the radian (rad). The
angle 6 in radians is 8/r, where S is the arc subtended by 6 in a
circle of radius r:

2?r rad = 360°. We shall always use the radian as the unit of
angle, unless otherwise stated. For example, in sin cot, cot is in

I radians, w therefore has the dimensions I/time and the units
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Av(r0 + AO

radians per second. (The radian is dimensionless, since it is the
ratio of two lengths.)

To avoid gross errors, it is a good idea to check to see that both
sides of an equation have the same dimensions or units. For
example, the equation v = areat is dimensionally correct; since
exponentials and their arguments are always dimensionless, a has
the units 1/s, and the right hand side has the correct units, meters
per second.

1.7 Formal Solution of Kinematical Equations

Dynamics, which we shall take up in the next chapter, enables us
to find the acceleration of a body directly. Once we know the
acceleration, finding the velocity and position is a simple matter of
integration. Here is the formal integration procedure.

If the acceleration is known as a function of time, the velocity
can be found from the defining equation

= a(0
dt

by integration with respect to time. Suppose we want to find v(^)
given the initial velocity v(t0) and the acceleration a(0- Dividing
the t | m e interval ti — t0 into n parts At = (h — to)/n,

+ 2A0 + • • •

« v(*0) + a(to + At) At + a(*0 + 2At) At + •

since Av(0 « a(0 A*. Taking the x component,

«>*(*i) « vx(to) + ax(to + A t ) A t + - - - + ax(h) A*.
The approximation becomes exact in the limit n
and the sum becomes an integral:

+

oo(A£—»0),

= vx(t0) ftl ax(t) dt.
Jto

The y and z components can be treated similarly. Combining the
results,

+ Vyih)} + vz(ti)k = vx(t0)i + fh ax(t) dt i
Jto

vy(t0)i dt i a,{t) dt

or

v(<i) = v(<0) + £ a(0 dt.
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This result is the same as the formal integration of dv = a dL

v(h) - v(t0) = f* a(0 dt

Sometimes we need an expression for the velocity at an arbi-
trary time t, in which case we have

v(0 = vo+ f'a(Odt'.
JU

The dummy variable of integration has been changed from t to t'
to avoid confusion with the upper limit t. We have designated the
initial velocity v(t0) by v0 to make the notation more compact.
When t = t0, v(0 reduces tov0l as we expect.

Example 1.9 Finding Velocity from Acceleration

A Ping-Pong ball is released near the surface of the moon with velocity
Vo = (0,5,— 3) m/s. It accelerates (downward) with acceleration
a = (0,0,-2) m/s2. Find its velocity after 5 s.

The equation

is equivalent to the three component equations

vx{t) = vOx + j l
o ax(t') dt'

Vyit) = vOy + j * ay(t
f) dt'

vz(t) = vo, + £ a&') dt'.

Taking these equations in turn with the given values of v0 and a, we
obtain at t = 5 s:

vx = 0 m/s
vy = 5 m/s
vM = - 3 + r (-2)df = -13 m/s.

Position is found by a second integration. Starting with

dt

we find, by an argument identical to the above,

r(t) = r0
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A particularly important case is that of uniform acceleration. If
we take a = constant and t0 = 0, we have

v(0 = v0 + at

and

r(0 = r0 + fo
l (v0 + at') dtf

or

r(t) = r0 + v0* + iat2.

Quite likely you are already familiar with this in its one dimen-
sional form. For instance, the x component of this equation is

x = x0 + vOxt + iazt
2

where vOx is the x component of v0. This expression is so familiar
that you may inadvertently apply it to the general case of varying
acceleration. Don't! It only holds for uniform acceleration. In
general, the full procedure described above must be used.

Example 1.10 Motion in a Uniform Gravitational Field

Suppose that an object moves freely under the influence of gravity so
that it has a constant downward acceleration g. Choosing the z axis
vertically upward, we have

a = — gk.

If the object is released at t = 0 with initial velocity v0, we have

X = X0 + VOxt

y = z/o + vOyt
z = zo + vOzt - igt2.

Without loss of generality, we can let r0 = 0, and assume that vOy = 0.
(The latter assumption simply means that we choose the coordinate
system so that the initial velocity is in the xz plane.) Then

x = vOxt

z = vOzt - igt2.
N

x The path of the object is shown in the sketch. We can eliminate time
* x from the two equations for x and z to obtain the trajectory.

QZ

Z = X —
Vox 2v0x
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This is the well-known parabola of free fall projectile motion. How-
ever, as mentioned above, uniform acceleration is not the most general
case.

Example 1.11 Nonuniform Acceleration—The Effect of a Radio Wave

on an Ionospheric Electron

The ionosphere is a region of electrically neutral gas, composed of posi-
tively charged ions and negatively charged electrons, which surrounds
the earth at a height of approximately 200 km (120 mi). If a radio wave
passes through the ionosphere, its electric field accelerates the charged
particle. Because the electric field oscillates in time, the charged
particles tend to jiggle back and forth. The problem is to find the motion
of an electron of charge — e and mass m which is initially at rest, and
which is suddenly subjected to an electric field E = Eo sin cot (co is the
frequency of oscillation in radians per second).

The law of force for the charge in the electric field is F = —eE, and by
Newton's second law we have a = F/ra = —eE/m. (If the reasoning
behind this is a mystery to you, ignore it for now. It will be clear later.
This example is meant to be a mathematical exercise—the physics is an
added dividend.) We have

-eE
a =

m

= sin cot.
m

Eo is a constant vector and we shall choose our coordinate system so
that the x axis lies along it. Since there is no acceleration in the y or
z directions, we need consider only the x motion. With this understand-
ing, we can drop subscripts and write a for ax.

a(t) = sin cot = a0 sin cot
m

where

a0 m

Then

v(t) = vo + JQ a(t') dt'

= v0 + / a0 sin cot' dt'
Jo

= Vo COS COt' = Vo (COS Cot — 1)
CO 1° CO
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and

x = x0 + [' v(t')dt'

+ f I v0 - — (cos at' - 1) df
J° L w J

CO / CO2

= Xo

= Xo + I v0 + - ) t - - sin col.

We are given that Xo = Vo = 0, so we have

x = — t sin col.
CO CO2

The result is interesting: the second term oscillates and corresponds
to the jiggling motion of the electron, which we predicted. The first
term, however, corresponds to motion with uniform velocity, so in addi-
tion to the jiggling motion the electron starts to drift away. Can you see
why?

A(f + AO

A(O

A + AA

A
Case 2

1.8 More about the Derivative of a Vector

In Sec. 1.6 we demonstrated how to describe velocity and accelera-
tion by vectors. In particular, we showed how to differentiate the
vector r to obtain a new vector v = dr/dt. We will want to dif-
ferentiate other vectors with respect to time on occasion, and so
it is worthwhile generalizing our discussion.

Consider some vector A(l) which is a function of time. The
change in A during the interval from t to I + Al is

AA = A(l + Al) - A(l).

In complete analogy to the procedure we followed in differentiat-
ing r in Sec. 1.6, we define the time derivative of A by

dA . A(l + Al) - A(l)

dt A<-»O At

It is important to appreciate that dA/dt is a new vector which
can be large or small, and can point in any direction, depending on
the behavior of A.

There is one important respect in which dA/dt differs from the
derivative of a simple scalar function. A can change in both
magnitude and direction—a scalar function can change only in
magnitude. This difference is important. The figure illustrates
the addition of a small increment AA to A. In the first case AA is
parallel to A; this leaves the direction unaltered but changes the
magnitude to |A| + |AA|. In the second, AA is perpendicular
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AA

to A. This causes a change of direction but leaves the magni-
tude practically unaltered.

In general, A will change in both magnitude and direction.
Even so, it is useful to visualize both types of change taking place
simultaneously. In the sketch to the left we show a small incre-
ment AA resolved into a component vector AAg parallel to A and a
component vector AA± perpendicular to A. In the limit where we
take the derivative, AAy changes the magnitude of A but not its
direction, while AA± changes the direction of A but not its mag-
nitude.

Students who do not have a clear understanding of the two ways
a vector can change sometimes make an error by neglecting one
of them. For instance, if dA/dt is always perpendicular to A, A
must rotate, since its magnitude cannot change; its time depend-
ence arises solely from change in direction. The illustrations
below show how rotation occurs when AA is always perpendicular
to A. The rotational motion is made more apparent by drawing

A' ^*~~~*%

the successive vectors at a common origin.

wAA"

AA'

AA

Contrast this with the case where AA is always parallel to A.

A' A" ^ A "

A AA A' AA' A

Drawn from a common origin, the vectors look like this:

•A ' "
• A "

AA"

- • A
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The following example relates the idea of rotating vectors to cir-
cular motion.

/
/
1
\
\
\

r

Vc
1
/
/

/
/

Example 1.12 Circular Motion and Rotating Vectors

In Example 1.8 we discussed the motion given by

r = r(cos toti + sin tot]).

The velocity is

v = rco( —sin coft + cos cot}).

Since

r • v = r2o>(—cos cot sin cot + sin cot cos cot)

= 0f

we see that dr/dt is perpendicular to r. We conclude that the magnitude
of r is constant, so that the only possible change in r is due to rotation.
Since the trajectory is a circle, this is precisely the case: r rotates about
the origin.

We showed earlier that a = —co2r. Since r • v = 0, it follows that
a . v = —co2r • v = 0 and dw/dt is perpendicular to v. This means that
the velocity vector has constant magnitude, so that it too must rotate if
it is to change in time.

That v indeed rotates is readily seen from the sketch, which shows v
at various positions along the trajectory. In the second sketch the same

velocity vectors are drawn from a common origin. It is apparent that
each time the particle completes a traversal, the velocity vector has swung
around through a full circle.

Perhaps you can show that the acceleration vector also undergoes
uniform rotation.

Suppose a vector A(0 has constant magnitude A. The only
way A(0 can change in time is by rotating, and we shall now
develop a useful expression for the time derivative dk/dt of such a
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rotating vector. The direction of dk/dt is always perpendicular
to A. The magnitude of dk/dt can be found by the following
geometrical argument.

The change in A in the time interval t to t + At is

AA = A(* + AO - A(0.

Using the angle AS defined in the sketch,

|AA| 2A sin ~

For A^ <K 1, sin A0/2 « AB/2, as discussed in Note 1.1. We have

|AA| ~ 2A y

= A A0
and

AA

Â

Taking the limit A2 —> 0,

dA_

= A —

= A —
dt

dB/dt is called the angular velocity of A.
For a simple application of this result, let A be the rotating

vector r discussed in Examples 1.8 and 1.12. Then B — wt and

dr
dt

d
r-(coO

dt or v = rw.

Returning now to the general case, a change in A is the result
of a rotation and a change in magnitude.

AA = AA± + AA||.

For AB sufficiently small,

|AAJ = A AB

|AAn| = AA

and, dividing by At and taking the limit,

dk±

A(O

dt

~dt

= Ajt

dt
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dkjdt is zero If A does not rotate (dd/dt = 0), and dA\\/dt is zero
if A is constant in magnitude.

We conclude this section by stating some formal identities in
vector differentiation. Their proofs are left as exercises. Let
the scalar c and the vectors A and B be functions of time. Then

|(AXB)=f XB + Axf-
dt dt dt

In the second relation, let A = B. Then

dt dt

and we see again that if dk/dt is perpendicular to A, the magnitude
of A is constant.

1.9 Motion in Plane Polar Coordinates

Polar Coordinates

Rectangular, or cartesian, coordinates are well suited to describing
motion in a straight line. For instance, if we orient the coordinate
system so that one axis lies in the direction of motion, then only a
single coordinate changes as the point moves. However, rec-
tangular coordinates are not so useful for describing circular
motion, and since circular motion plays a prominent role in physics,
it is worth introducing a coordinate system more natural to it.

We should mention that although we can use any coordinate
system we like, the proper choice of a coordinate system can
vastly simplify a problem, so that the material in this section is
very much in the spirit of more advanced physics. Quite likely
some of this material will be entirely new to you. Be patient if it
seems strange or even difficult at first. Once you have studied
the examples and worked a few problems, it will seem much more
natural.

Our new coordinate system is based on the cylindrical coordi-
nate system. The z axis of the cylindrical system is identical to
that of the cartesian system. However, position in the xy plane is
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described by distance r from the z axis and the angle 6 that r
makes with the x axis. These coordinates are shown in the
sketch. We see that

-y y

6 = arctan —
x

Since we shall be concerned primarily with motion in a plane,
we neglect the z axis and restrict our discussion to two dimensions.
The coordinates r and 6 are called plane polar coordinates. In the
following sections we shall learn to describe position, velocity, and
acceleration in plane polar coordinates.

The contrast between cartesian and plane polar coordinates is
readily seen by comparing drawings of constant coordinate lines
for the two systems.

1•m1-

IULTI
_l_,_ur.U

JC = constant
y vanes

/ y = constant
x varies

6 = constant
r varies

\ - .

r = constant
0 varies

j r

Cartesian Plane polar

The lines of constant x and of constant y are straight and per-
pendicular to each other. Lines of constant 6 are also straight,
directed radially outward from the origin. In contrast, lines of
constant r are circles concentric to the origin. Note, however,
that the lines of constant 6 and constant r are perpendicular
wherever they intersect.

In Sec. 1.4 we introduced the base vectors i and j which point in
the direction of increasing x and increasing y, respectively. In
a similar fashion we now introduce two new unit vectors, f and 6,
which point in the direction of increasing r and increasing 6. There
is an important difference between these base vectors and the
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sin0

cos 8 sin 0

cos 6

cartesian base vectors: the directions of r and 6 vary with position,
whereas i and j have fixed directions. The drawing shows this by
illustrating both sets of base vectors at two points in space.
Because r and 8 vary with position, kinematical formulas can look
more complicated in polar coordinates than in the cartesian system.
(It is not that polar coordinates are complicated, it is simply that
cartesian coordinates are simpler than they have a right to be.
Cartesian coordinates are the only coordinates whose base vectors
have fixed directions.)

Although r and 8 vary with position, note that they depend on 0
only, not on r. We can think of r and 8 as being functionally
dependent on 0.

The drawing shows the unit vectors i, j and r, 8 at a point in the
xy plane. We see that

r = f cos 0 + j sin 0

8 = — \ sin 0 + j cos 0.

Before proceeding, convince yourself that these expressions are
reasonable by checking them at a few particularly simple points,
such as 0 = 0, and w/2. Also verify that r and 8 are orthogonal
(i.e., perpendicular) by showing that r • 8 = 0.

It is easy to verify that we indeed have the same vector r no
matter whether we describe it by cartesian or polar coordinates.
In cartesian coordinates we have

r = x\ + y],

and in polar coordinates we have

r = rr.

If we insert the above expression for f, we obtain

x\ + y] = r(\ cos 0 + j sin 0).

We can separately equate the coefficients of i and j to obtain

x = r cos 0 y = r sin 0,

as we expect.
The relation

r = rr

is sometimes confusing, because the equation as written seems to
make no reference to the angle 0. We know that two parameters
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are needed to specify a position in two dimensional space (in
cartesian coordinates they are x and y), but the equation r = rf
seems to contain only the quantity r. The answer is that r is not
a fixed vector and we need to know the value of 0 to tell how r is
oriented as well as the value of r to tell how far we are from the
origin. Although 0 does not occur explicitly in rr, its value must be
known to fix the direction of r. This would be apparent if we
wrote r = rr(0) to emphasize the dependence of r on 0. How-
ever, by common convention r is understood to stand for r(0).

The orthogonality of f and 0 plus the fact that they are unit
vectors, |r| = 1, |8| = 1, means that we can continue to evaluate
scalar products in the simple way we are accustomed to. If

A = Arx + Ade and B = Brx +

then

A • B = ArBr + AeB9.

Of course, the r's and the 8's must refer to the same point in
space for this simple rule to hold.

Velocity in Polar Coordinates

Now let us turn our attention to describing velocity with polar
coordinates. Recall that in cartesian coordinates we have

at

(Remember that x stands for dx/dt.)
The same vector, v, expressed in polar coordinates is given by

The first term on the right is obviously the component of the
velocity directed radially outward. We suspect that the second
term is the component of velocity in the tangential (8) direction.
This is indeed the case. However to prove it we must evaluate
dx/dt. Since this step is slightly tricky, we shall do it three dif-
ferent ways. Take your pick!
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Evaluating dr/dt

Method 1 We can invoke the ideas of the last section to find
dr/dt. Since f is a unit vector, its magnitude is constant and
dr/dt is perpendicular to r; as 0 increases, r rotates.

|Ar|

|Ar|

A0 = A0,

A0

and, taking the limit, we obtain

dd

dt

As the sketch shows, as 0 increases, r swings in the 8 direction,
hence

- = 08
dt ~~
If this method is too casual for your taste, you may find methods
2 or 3 more appealing.

Method 2

f = I cos 0 + j sin 0

We note that i and j are fixed unit vectors, and thus cannot
vary in time. 0, on the other hand, does vary as r changes.
Using

d

and

= —sin

= cos 0 0,

we obtain

= —I sin 6 6 + j cos 6 6

= ( — i sin 6 + j cos 6) 6.
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02

sin A0

- cosA0)

However, recall that - i sin 0 + j cos 0 = §. We obtain

dr . .
- = 06.
dt

Method 3

The drawing shows r at two different times, t and t + At. The
coordinates are, respectively, (r,0) and (r + Ar, 0 + A0). Note
that the angle between ?i and r2 is equal to the angle between
§i and 82; this angle is 02 — 0i = A0.

The change in r during the time At is illustrated by the lower
drawing. We see that

Ar = 0

Hence

A? .

A*

i sin A0 —

sin A0
1 At

ri (1

- (1

— cos

— cos

At

A0).

A0)

. /A0 - KA0)3 + \ . /1(A0)2 ~ A(A0)4 + • • -\
= Oi \ At ) -r i v M r

where we have used the series expansions discussed in Note 1.1.
We need to evaluate

dr Af
— = lim —
dt A<_>o ^

In the limit A2 —• 0, A0 also approaches zero, but A0/A2 approaches
the limit dd/dt. Therefore

A0
lim — (A0)n = 0

At-+O At
n > 0.

The term in f entirely vanishes in the limit and we are left with

dr ft

it - ^
as before. We also need an expression for db/dt. You can use
any, or all, of the arguments above to prove for yourself that

dt
= -6'r.
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Since you should be familiar with both results, let's summarize
them together:

dr

dt
S
dt

= 06

= - e l

And now, we can return to our problem. On page 30 we showed
that

d . . , dr
v = —rr = rr + r — •

dt dt

Using the above results, we can write this as

v = f r + r06.

As we surmised, the second term is indeed in the tangential
(that is, 6) direction. We can get more insight into the meaning
of each term by considering special cases where only one com-
ponent varies at a time.

Case 1

Case 2

1. 6 = constant, velocity is radial. If 6 is a constant, 0 = 0, and
v = rr. We have one dimensional motion in a fixed radial
direction.

2. r = constant, velocity is tangential. In this case v = r08.
Since r is fixed, the motion lies on the arc of a circle. The
speed of the point on the circle is r$, and it follows that v = r08.

For motion in general, both r and 0 change in time.
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The next three examples illustrate the use of polar coordinates
to describe velocity.

Example 1.13 Circular Motion and Straight Line Motion in Polar Coordinates

A particle moves in a circle of radius b with angular velocity 0 = at, where
a is a constant, (a has the units radians per second2.) Describe
the particle's velocity in polar coordinates.

Since r = b = constant, v is purely tangential and v = batQ. The
sketches show f, 0, and v at a time t\ and at a later time t2.

*2

o-

/
i
V

= '2

V. /

/ \
\
\ \

\

x \
\

\

^ \
\
1

/

The particle is located at the position

r = b 6 = So + r 6 dt = do + icrf2.

If the particle is on the x axis at t = 0, 0O = 0. The particle's position
vector is r = br, but as the sketches indicate, 6 must be given to specify
the direction of r.

Consider a particle moving with constant velocity v = u\ along the
line y — 2. Describe v in polar coordinates.

v = vrr + v^.

From the sketch,

Vr = U COS 6

v$ = —u sin 6

v = u cos dr — u sin 00.

As the particle moves to the right, 0 decreases and r and 6 change direc-
_ tion. Ordinarily, of course, we try to use coordinates that make the
x problem as simple as possible; polar coordinates are not well suited here.
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Example 1.14 Velocity of a Bead on a Spoke

A bead moves along the spoke of a wheel at constant speed u meters per
second. The wheel rotates with uniform angular velocity 0 = co radians
per second about an axis fixed in space. At t = 0 the spoke is along the
x axis, and the bead is at the origin. Find the velocity at time t

a. In polar coordinates

— - b. In cartesian coordinates.

a. We have r = ut, f = u, 0 = co. Hence

v =rr + r6§ = ur

To specify the velocity completely, we need to know the direction of
f and 0. This is obtained from r = (r,0) = (ut,oot)-

b. In cartesian coordinates, we have

vx = vr cos 6 — ve sin 6

vy = vr sin 6 + ve cos 6.

Since vr = u, v$ = rco = uto), 8 — cot, we obtain

v = (u cos o>t — uto) sin ojQt + (u sin co£ + ttfco cos coOi-

Note how much simpler the result is in plane polar coordinates.

Example 1.15 Off-center Circle
0

A particle moves with constant speed v around a circle of radius b. Find
its velocity vector in polar coordinates using an origin lying on the circle.

With this origin, v is no longer purely tangential, as the sketch indicates.

v = — v sin fir + v cos /36

= —v sin 0r + v cos 06.
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The last step follows since 0 and 6 are the base angles of an isosceles
triangle and are therefore equal. To complete the calculation, we must
find 8 as a function of time. By geometry, 20 = ut or $ = cot/2, where
o) = v/b.

+ Avr

Acceleration i

Our final
to obtain

_ d

d . .

dt

= fr + r

in Polar Coordinates

task is

hr08)

to find the

# + r® +

acceleration.

r6~dA

We differentiate v

If we substitute the results for df/dt and db/dt from page 33, we
obtain

a = ft + m + m + r<98 - rd2r
= (f - r62)r + (r$ + 2r0)6.

The term fr is a linear acceleration in the radial direction due
to change in radial speed. Similarly, r08 is a linear acceleration
in the tangential direction due to change in the magnitude of the
angular velocity.

The term — rd2r is the centripetal acceleration which we
encountered in Example 1.8. Finally, 2r08 is the Coriolis accel-
eration. Perhaps you have heard of the Coriolis force, a ficti-
tious force which appears to act in a rotating coordinate system,
and which we shall study in Chap. 8. The Coriolis acceleration
that we are discussing here is a real acceleration which is present
when r and 6 both change with time.

The expression for acceleration in polar coordinates appears
complicated. However, by looking at it from the geometric point
of view, we can obtain a more intuitive picture.

The instantaneous velocity is

v = fr + r6§ = vrr + ve§.

Let us look at the velocity at two different times, treating the radial
and tangential terms separately.

The sketch at left shows the radial velocity fr = vrr at two differ-
ent instants. The change Avr has both a radial and a tangential
component. As we can see from the sketch (or from the dis-
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cussion at the end of Sec. 1.8), the radial component of Avr is
AvTr and the tangential component is vrA6§. The radial com-
ponent contributes

hm I — r) = — r = rx
\At ) dt

to the acceleration. The tangential component contributes

/ Ad A dd .
lim I vr — 0 ) = vr — 8 = r06,

A ^o \ A « / dt

which is one-half the Coriolis acceleration. We see that half the
Coriolis acceleration arises from the change of direction of the
radial velocity.

The tangential velocity rdh = ve6 can be treated similarly. The
change in direction of 6 gives Av$ an inward radial component
—vo A0r. This contributes

lim
/ Af lA
( —v9 — r ) = —ve6r = —rd2r,
\ At J

which we recognize as the centripetal acceleration. Finally, the
tangential component of Ave is A^8. Since ve = rd, there are
two ways the tangential speed can change. If 6 increases by
Ad, ve increases by r Ad. Second, if r increases by Ar, ve increases
by ArB. Hence Ave = r Ad + Ar d, and the contribution to the
acceleration is

lim ( — 0 1 = lim ( r 0 ) 0
A<_0 \A^ / A^O \ Â  At )

= (rd + rd%

The second term is the remaining half of the Coriolis acceleration;
we see that this part arises from the change in tangential speed
due to the change in radial distance.

Example 1.16 Acceleration of a Bead on a Spoke

A bead moves outward with constant speed u along the spoke of a wheel.
It starts from the center at t = 0. The angular position of the spoke is
given by d = ut, where co is a constant. Find the velocity and acceleration.

v = rr + rdh

We are given that f
r — ut, and we have

u and d = co. The radial position is given by

ur +
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The acceleration is

a = (r - rB2)r + (rd + 2r0)8

= -uto)2r + 2mo8.

The velocity is shown in the sketch for several different positions of the
wheel. Note that the radial velocity is constant. The tangential acceler-
ation is also constant—can you visualize this?

Example 1.17 Radial Motion without Acceleration

A particle moves with 6 = o> = constant and r = roe^, where r0 and /3
are constants. We shall show that for certain values of fi, the particle
moves with ar = 0.

a = (r - r$2)r + (rd + 2r0)8

If p = ±co, the radial part of a vanishes.
It is very surprising at first that when r = rtfP* the particle moves with

zero radial acceleration. The error is in thinking that r makes the only
contribution to ar) the term —rd2 is also part of the radial acceleration,
and cannot be neglected.

The paradox is that even though ar = 0, the radial velocity vr = f =
rocoeP* is increasing rapidly with time. The answer is that we can be
misled by the special case of cartesian coordinates; in polar coordinates,

vr * Jar(t) dt,

because far(t) dt does not take into account the fact that the unit vectors
r and 8 are functions of time.
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€£

Note 1.1 Mathematical Approximation Methods

Occasionally in the course of solving a problem in physics you may find
that you have become so involved with the mathematics that the physics
is totally obscured. In such cases, it is worth stepping back for a moment
to see if you cannot sidestep the mathematics by using simple approxi-
mate expressions instead of exact but complicated formulas. If you
have not yet acquired the knack of using approximations, you may feel
that there is something essentially wrong with the procedure of substitut-
ing inexact results for exact ones. However, this is not really the case,
as the following example illustrates.

Suppose that a physicist is studying the free fall of bodies in vacuum,
using a tall vertical evacuated tube. The timing apparatus is turned on
when the falling body interrupts a thin horizontal ray of light located a
distance L below the initial position. By measuring how long the body
takes to pass through the light beam, the physicist hopes to determine
the local value of g, the acceleration due to gravity. The falling body in
the experiment has a height I.

For a freely falling body starting from rest, the distance s traveled in
+ i time t is

8 = igt2,

which gives

t Jv,
The time interval £2 — t\ required for the body to fall from Si = L centi-
meters to s2 = (L + I) centimeters is

- Vly

If t2 — ti is measured experimentally, g is given by

\ (*2~*l)

This formula is exact under the stated conditions, but it may not be the
most useful expression for our purposes.

Consider the factor

In practice, L will be large compared with / (typical values might be L =
100 cm, I = 1 cm). Our factor is the small difference between two large
numbers and is hard to evaluate accurately by using a slide rule or ordi-
nary mathematical tables. Here is a simple approach, known as the
method of power series expansion, which enables us to evaluate the factor
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to any accuracy we please. As we shall discuss formally later in this Note,

the quantity V I + £ can be written in the series form

Vl + x = 1 + ix - ib2 + TV*3 + ' ' '

for — 1 < x < 1. Furthermore, if we cut off the series at some point, the
error we incur by this approximation is of the order of the first neglected
term. We can put the factor in a form suitable for expansion by first
extracting V 'I;:

VL + I -VL = VL (JI + L - iY

The dimensionless ratio l/L plays the part of x in our expansion. Expand-

ing V I + l/L in the series form gives

We see that if l/L is much smaller than 1, the successive terms decrease
rapidly. The first term in the bracket, i(l/L), is the largest term, and
extracting it from the bracket yields

Our expansion is now in its final and most useful form. The first
factor, Z/(2v L), gives the dominant behavior and is a useful first approx-
imation. Furthermore, writing the series as we have, with leading term
1, shows clearly the contributions of the successive powers of l/L. For
example, if l/L = 0.01, the term i(l/L)2 = 1.2 X 10~5 and we make a
fractional error of about 1 part in 105 by retaining only the preceding
terms. In many cases this accuracy is more than enough. For instance,
if the time interval t2 — U in the falling body experiment can be measured
to only 1 part in 1,000, we gain nothing by evaluating V L + I — V L to
greater accuracy than this. On the other hand, if we require greater
accuracy, we can easily tell how many terms of the series should be
retained.

Practicing physicists make mathematical approximations freely (when
justified) and have no compunctions about discarding negligible terms.
The ability to do this often makes the difference between being stymied
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by impenetrable algebra and arithmetic and successfully solving a
problem.

Furthermore, series approximations often allow us to simplify compli-
cated algebraic expressions to bring out the essential physical behavior.

Here are some helpful methods for making mathematical approxi-
mations.

1 THE BINOMIAL SERIES

( + x) + + +
2! 3!

+ . . . , n ( n - ! ) • • • ( n - k + 1 ) ^ | . . .

This series is valid for — 1 < z < 1, and for any value of n. (If n is
an integer, the series terminates, the last term being zn.) The series
is exact; the approximation enters when we truncate it. For n = i, as
in our example,

If we need accuracy only to 0(x2) (order of z2), we have

(1 + a:)* = 1 + iz - }z2 + 0(z3),

where the term 0(z3) indicates that terms of order x3 and higher are not
being considered. As a rule of thumb, the error is approximately the
size of the first term dropped.

The series can also be applied if \z\ > 1 as follows:

(1 + X)n = xn H)"
[" 1 n ( n - l ) / l V , 1

= xn 1 + n- H I - ) + • • • .

L * 2! W JExamples:

1. - i — = (1 + x)~l

1 + x

2. —L. = (1 - x)-1

1 — z
= l + z + z2 + x 3 + - ' - -1 <z <1

3. (1,001)̂  = (1,000 + 1)' = lf000*(l + 0.001)1

= 10[l + 0.001(i) + • • ]

« 10(1.0003) = 10.003

4. 2 r = ^ : for small x, this expression is zero to first
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approximation. However, this approximation may not be adequate.
Using the binomial series, we have

2 -1 j± = 2 - (1 - ix + fx2 + • • •)
VI + x VI - x

- (1+ ix + f x2 + • • •)

Notice that the terms linear in x also cancel. To obtain a nonvanishing
result we had to go to a high enough order, in this case to order x2. It
is clear that for a correct result we have to expand all terms to the same
order.

2 TAYLOR'S SERIES1

Analogous to the binomial series, we can try to represent an arbitrary
function / (x ) by a power series in x:

f(x) = a0 + axx + a2x
2 + • • • = ) akx

k.

For x = 0 we must have

/(0) = a0.

Assuming for the moment that it is permissible to differentiate, we have

Q = f'(x) = a1+2a2x +
dx

Evaluating at x = 0 we have

Continuing this process, we find

where / ( & )(x) is the kth derivative of / (x) . For the sake of a less cum-

bersome notation, we often write/a)(0) to stand for/(A) (x) ; but bear

in mind that /(A)(0) means that we should differentiate / (x ) k times and
then set x equal to 0.

The power series for / (x) , known as a Taylor series, can then be
expressed formally as

f(x) = /(0) + /' (0)x + /"(Q) j + f"(0) ̂  + • • • .

This series, if it converges, allows us to find good approximations to / (x )
for small values of x (that is, for values of x near zero). Generalizing,

/(a + x) = /(a) + /' (a)x + /"(a) ^ + • • •
1 Taylor's series is discussed in most elementary calculus texts. See the list at
the end of the chapter.
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gives us the behavior of the function in the neighborhood of the point a.
An alternative form for this expression is

(.t-af ,
/(0=/(a)+f(o)«-o)+/"(o)-

2!

Our formal manipulations are valid only if the series converges. The
range of convergence of a Taylor series may be — «> < x < °o for
some functions (such as ex) but quite limited for other functions. (The
binomial series converges only if — 1 < x < 1.) The range of conver-
gence is hard to find without considering functions of a complex vari-
able, and we shall avoid these questions by simply assuming that we are
dealing with simple functions for which the range of convergence is either
infinite or is readily apparent. Here are some examples:

a. The Trigonometric Functions

Let f(x) = sin x, and expand about x = 0.

/(0) = sin (0) = 0
/'(0) = cos (0) = 1

/"(0) = -sin(0) = 0
/"'(0) = -cos (0) = - 1 , etc.
Hence

1 1 1
sin x = x x3 -\ x5 x7 + • • • .

3! 5! 7!
Similarly

cos x = 1 x2 H — x4 — - - - .
2! 4!

These expansions converge for all values of x but are particularly use-
ful for small values of x. To O(x2), sin x = x, cos x = 1 — x2/2.

The figure below compares the exact value for sin x with a Taylor
series in which successively higher terms are included. Note how each

y<
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term increases the range over which the series is accurate. If an infinite
number of terms are included, the Taylor series represents the function
accurately everywhere.

b. The Binomial Series

We can derive the binomial series introduced in the last section by letting

}(x) = (1 + x)\

Then

/(0) = 1
f(O) = n(l + 0)n = n

/"(0) = n(n - 1)
/W(0) = nin - l)(n - 2) • • • (n - k + 1)

(1 -(- X)n = 1 + nX -f _ n ( n _ 1)̂ 2 _|_ . . .

|

c. The Exponential Function
If we let /(£) = ex, we have / ' (x) = /(:r)f by the definition of the expo-
nential function. Similarly f{k)(x) = /(x). Since/(0) = e° = l r we have

e* = l - h o : H — o:2H— a?3-f- • • • .
2! 3!

This series converges for all values of x.
A useful result from the theory of the Taylor series is that if the series

converges at all, it represents the function so well that we are allowed to
differentiate or integrate the series any number of times. For example,

d d ( 1 1 \
— (sin x) - — ( x - - x3 + - xs + ' ' )
dx dx \ 3! 5! /

= 1 - - x2 + - x4 + - - •
2! 4!

= COS X.

Furthermore, the Taylor series for the product of two functions is the
product of the individual series:

sin x cos x = ( x x3 + xb + • • ' i f l x2 -\— x 4 + • • • )
\ 3! 5! ) \ 2! 4! /

3!2!
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Ax3 16x5

x • +
3! 5!

- 2 [sin (2x)].

The Taylor series sometimes comes in handy in the evaluation of inte-
grals. To estimate

1.1 e
— dz,
z

let z = 1 + x. We then have

l—dx

ro.i v
• dx

/•o.i

Jo 1 + x
o.i (1 + x)

dx

« 0.1e.

The approximation should be better than 1 part in 100 or so, for x always
lies in the interval 0 < x < 0.1. In this range, ex ~ 1 + x is a good
approximation to two or three significant figures.

3 DIFFERENTIALS
Consider fix), a function of the independent variable x. Often we need

to have a simple approximation for the change in f(x) when x is changed
to x + Ax. Let us denote the change by A/ = f(x + Ax) - }(x). It
is natural to turn to the Taylor series. Expanding the Taylor series for
f(x) about the point x gives

f(x + Ax) = fix) + f\x) Ax + -fix) Ax2 + • • • ,

where, for example, fix) stands for df/dx evaluated at the point x.
Omitting terms of order (Ax)2 and higher yields the simple linear approx-
imation

A/ = f{x + Ax) - fix) « fix) Ax.

This approximation becomes increasingly accurate the smaller the
size of Ax. However, for finite values of Ao*, the expression

A/ « /'(x) Ax
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x + Ax

x+dx

has to be considered to be an approximation. The graph at left shows
a comparison of Af = f(x + Ax) — f(x) with the linear extrapolation
f'(x)Ax. It is apparent that Af, the actual change in f(x) as x is
changed, is generally not exactly equal to Af for finite Ax.

As a matter of notation, we use the symbol dx to stand for Ax, the
increment in x. dx is known as the differential of x; it can be as large or
small as we please. We define df, the differential of / , by

This notation is illustrated in the lower drawing. Note that dx and
Arr are used interchangeably. On the other hand, c?/and A/are different
quantities, df is a differential defined by df = f'{x)dx, whereas A/ is
the actual change f(x + dx) — f(x). Nevertheless, when the linear
approximation is justified in a problem, we often use df to represent
Af. We can always do this when eventually a limit will be taken. Here
are some examples.

1. d(sin 6) = cos Odd.

2. d(xex*) = (e*2 + 2x2e*2) dx.

3. Let V be the volume of a sphere of radius r:

V

dV = 4TIT2 dr.

4. What is the fractional increase in the volume of the earth if its average
radius, 6.4 X 106 m, increases by 1 m?

dV
V

4?rr2 dr

- 3 *
r

3
- 47 X 10-7.

6.4 X 106

One common use of differentials is in changing the variable of integra-
tion. For instance, consider the integral

xex* dx.
i,

A useful substitution is t = x2. The procedure is first to solve for x in
terms of t,

x = \/J,
and then to take differentials:
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This result is exact, since we are effectively taking the limit. The original
integral can now be written in terms of t:

( V 2 dx = fh V1 e< (- -V- dt) =-- i [t2 e<
Ja Jti \2 y/t ) Jti

dt

where ti = a2 and t2 = b2.

Some References to Calculus Texts

A very popular textbook is G. B. Thomas, Jr., "Calculus and Analytic
Geometry," 4th ed., Addison-Wesley Publishing Company, Inc., Reading,
Mass.

The following introductory texts in calculus are also widely used:
M. H. Protter and C. B. Morrey, "Calculus with Analytic Geometry,"
Addison-Wesley Publishing Company, Inc., Reading, Mass.
A. E. Taylor, "Calculus with Analytic Geometry," Prentice-Hall, Inc.,
Englewood Cliffs, N.J.
R. E. Johnson and E. L. Keokemeister, "Calculus With Analytic Geometry,"
Allyn and Bacon, Inc., Boston.

A highly regarded advanced calculus text is R. Courant, "Differential and
Integral Calculus," Interscience Publishing, Inc., New York.

If you need to review calculus, you may find the following helpful: Daniel
Kleppner and Norman Ramsey, "Quick Calculus," John Wiley & Sons,
Inc., New York.

Problems 1.1 Given two vectors, A = (21 - 3j + 7k) and B = (51 + j + 2k), find:
(a) A + B; (b) A - B; (c) A • B; (d) A X B.

Ans. (a) 71 - 2j + 9k; (c) 21

1.2 Find the cosine of the angle between

A = (3? + j + k) and B = (-21 - 3j - k).
Ans. -0.805

1.3 The direction cosines of a vector are the cosines of the angles it
makes with the coordinate axes. The cosine of the angles between the
vector and the x, y, and z axes are usually called, in turn a, 0, and y.
Prove that a2 + /32 + y2 = 1, using either geometry or vector algebra.

1.4 Show that if |A - B| = |A + B|, then A is perpendicular to B.

1.5 Prove that the diagonals of an equilateral parallelogram are per-
pendicular.

1.6 Prove the law of sines using the cross product. It should only take
a couple of lines. (Hint: Consider the area of a triangle formed by A,
B, C, where A + B + C = 0.)
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1.7 Let a and b be unit vectors in the xy plane making angles 0 and
4> with the x axis, respectively. Show that a = cos 0i + sin 0|, b =
cos <f>\ + sin <£j, and using vector algebra prove that

cos (0 — <f>) = cos 0 cos <£ + sin 0 sin <£.

1.8 Find a unit vector perpendicular to

A = (i + j - k) and B = (2i - j + 3k).

Ans. n = +(2t - 5j - 3k ) /V38

1.9 Show that the volume of a parallelepiped with edges Af B, and C is
given by A • (B X C).

1.10 Consider two points located at n and r2, separated by distance
r = |rj — r2|. Find a vector A from the origin to a point on the line
between i*i and r2 at distance xr from the point at rlf where x is some
number.

1.11 Let A be an arbitrary vector and let n be a unit vector in some fixed
direction. Show that A = (A • n)n + (n X A) X n.

1.12 The acceleration of gravity can be measured by projecting a body
upward and measuring the time that it takes to pass two given points
in both directions.

Show that if the time the body takes to pass a horizontal line A in both
directions is TA, and the time to go by a second line B in both directions
is TB, then, assuming that the acceleration is constant, its magnitude is

Bh
a = 1
y TA* - TV
where h is the height of line B above line A.

1.13 At t = 0, an elevator departs from the ground with uniform speed. At
time T\ a boy drops a marble through the floor. The marble falls with
uniform acceleration g = 9.8 m/s2, and hits the ground T2 seconds
later. Find the height of the elevator at time Tx.

Ans. clue. If Tx = T2 = 4 s, h = 39.2 m

1.14 A drum of radius R rolls down a slope without slipping. Its axis
has acceleration a parallel to the slope. What is the drum's angular
acceleration a?

1.15 By relative velocity we mean velocity with respect to a specified
coordinate system. (The term velocity, alone, is understood to be rela-
tive to the observer's coordinate system.)

a. A point is observed to have velocity MA relative to coordinate system
A. What is its velocity relative to coordinate system B, which is displaced
from system A by distance R? (R can change in time.)

Ans. vB = VA — dR/dt

b. Particles a and b move in opposite directions around a circle with
angular speed w, as shown. At t = 0 they are both at the point r = Q,
where I is the radius of the circle.

Find the velocity of a relative to b.



PROBLEMS

1.16 A sportscar, Fiasco I, can accelerate uniformly to 120 mi/h in 30 s.
Its maximum braking rate cannot exceed OJ^. What is the minimum
time required to go -J mi, assuming it begins and ends at rest? (Hint:
A graph of velocity vs. time can be helpful.)

1.17 A particle moves in a plane with constant radial velocity f = 4 m/s.
The angular velocity is constant and has magnitude 0 = 2 rad/s. When
the particle is 3 m from the origin, find the magnitude of (a) the velocity
and (b) the acceleration.

Ans. (a) v = V 5 2 m/s

1.18 The rate of change of acceleration is sometimes known as "jerk."
Find the direction and magnitude of jerk for a particle moving in a circle
of radius R at angular velocity a>. Draw a vector diagram showing the
instantaneous position, velocity, acceleration, and jerk.

1.19 A tire of radius R rolls in a straight line without slipping. Its center
moves with constant speed V. A small pebble lodged in the tread of the
tire touches the road at t = 0. Find the pebble's position, velocity and
acceleration as functions of time.

1.20 A particle moves outward along a spiral. Its trajectory is given
by r = Ad, where A is a constant. A = (1/TT) m/rad. 6 increases in
time according to 6 = at2/2, where a is a constant.

a. Sketch the motion, and indicate the approximate velocity and accel-
eration at a few points.

b. Show that the radial acceleration is zero when 6 = 1 / V 2 rad.
c. At what angles do the radial and tangential accelerations have equal

magnitude?

1.21 A boy stands at the peak of a hill which slopes downward uniformly
at angle #. At what angle 0 from the horizontal should he throw a rock
so that it has the greatest range?

Ans. clue. If <t> = 60°, 6 = 15°
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2.1 Introduction

Our aim in this chapter is to understand Newton's laws of motion.
From one point of view this is a modest task: Newton's laws are
simple to state and involve little mathematical complexity. Their
simplicity is deceptive, however. As we shall see, they combine
definitions, observations from nature, partly intuitive concepts,
and some unexamined assumptions on the properties of space
and time. Newton's statement of the laws of motion left many
of these points unclear. It was not until two hundred years after
Newton that the foundations of classical mechanics were care-
fully examined, principally by Ernst Mach,1 and our treatment is
very much in the spirit of Mach.

Newton's laws of motion are by no means self-evident. In
Aristotle's system of mechanics, a force was thought to be needed
to maintain a body in uniform motion. Aristotelian mechanics
was accepted for thousands of years because, superficially, it
seemed intuitively correct. Careful reasoning from observation
and a real effort of thought was needed to break out of the
aristotelian mold. Most of us are still not accustomed to think-
ing in newtonian terms, and it takes both effort and practice to
learn to analyze situations from the newtonian point of view. We
shall spend a good deal of time in this chapter looking at applica-
tions of Newton's laws, for only in this way can we really come to
understand them. However, in addition to deepening our under-
standing of dynamics, there is an immediate reward—we shall be
able to analyze quantitatively physical phenomena which at first
sight may seem incomprehensible.

Although Newton's laws provide a direct introduction to classical
mechanics, it should be pointed out that there are a number of
other approaches. Among these are the formulations of Lagrange
and Hamilton, which take energy rather than force as the funda-
mental concept. However, these methods are physically equiva-
lent to the newtonian approach, and even though we could use
one of them as our point of departure, a deep understanding of
Newton's laws is an invaluable asset to understanding any system-
atic treatment of mechanics.

A word about the validity of newtonian mechanics: possibly you
already know something about modern physics—the development
early in this century of relativity and quantum mechanics. If so,
1 Mach's text, "The Science of Mechanics" (1883), translated the arguments from
Newton's "Principia" into a more logically satisfying form. His analysis of the
assumptions of newtonian mechanics played a major role in the development of
Einstein's special theory of relativity, as we shall see in Chap. 10.



SEC. 2.2 NEWTON'S LAWS 53

you know that there are important areas of physics in which new-
tonian mechanics fails, while relativity and quantum mechanics
succeed. Briefly, newtonian mechanics breaks down for systems
moving with a speed comparable to the speed of light, 3 X 108 m/s,
and it also fails for systems of atomic dimensions or smaller where
quantum effects are significant. The failure arises because of
inadequacies in classical concepts of space, time, and the nature
of measurement. A natural impulse might be to throw out class-
ical physics and proceed directly to modern physics. We do not
accept this point of view for several reasons. In the first place,
although the more advanced theories have shown us where class-
ical physics breaks down, they also show us where the simpler
methods of classical physics give accurate results. Rather than
make a blanket statement that classical physics is right or wrong,
we recognize that newtonian mechanics is exceptionally useful in
many areas of physics but of limited applicability in other areas.
For instance, newtonian physics enables us to predict eclipses cen-
turies in advance, but is useless for predicting the motions of
electrons in atoms. It should also be recognized that because
classical physics explains so many everyday phenomena, it is an
essential tool for all practicing scientists and engineers. Further-
more, most of the important concepts of classical physics are pre-
served in modern physics, albeit in altered form.

2.2 Newton's Laws

It is important to understand which parts of Newton's laws are
based on experiment and which parts are matters of definition.
In discussing the laws we must also learn how to apply them, not
only because this is the bread and butter of physics but also
because this is essential for a real understanding of the under-
lying concepts.

We start by appealing directly to experiment. Unfortunately,
experiments in mechanics are among the hardest in physics
because motion in our everyday surroundings is complicated by
forces such as gravity and friction. To see the physical essen-
tials, we would like to eliminate all disturbances and examine very
simple systems. One way to accomplish this would be to enroll
as astronauts, for in the environment of space most of the every-
day disturbances are negligible. However, lacking the resources
to put ourselves in orbit, we settle for second best, a device
known as a linear air track, which approximates ideal conditions,
but only in one dimension. (Although it is not clear that we can
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learn anything about three dimensional motion from studying
motion in one dimension, happily this turns out to be the case.)

Air jets

Rider

Compressed air

Linear air track

The linear air track is a hollow triangular beam perhaps 2 m
long, pierced by many small holes which emit gentle streams of
air. A rider rests on the beam, and when the air is turned on, the
rider floats on a thin cushion of air. Because of the air suspen-
sion, the rider moves with negligible friction. (The reason for this
is that the thin film of air has a viscosity typically 5,000 times less
than a film of oil.) If the track is leveled carefully, and if we elim-
inate stray air currents, the rider behaves as if it were isolated in
its motion along the track. The rider moves along the track free
of gravity, friction, or any other detectable influences.

Now let's observe how the rider behaves. (Try these experi-
ments yourself if possible.) Suppose that we place the rider on
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the track and carefully release it from rest. As we might expect,
the rider stays at rest, at least until a draft hits it or somebody
bumps the apparatus. (This isn't too surprising, since we leveled
the track until the rider stayed put when left at rest.) Next, we
give the rider a slight shove and then let it move freely. The
motion seems uncanny, for the rider continues to move along
slowly and evenly, neither gaining nor losing speed. This is con-
trary to our everyday experience that moving bodies stop moving
unless we push them. The reason is that in everyday motion,
friction usually plays an important role. For instance, the air
track rider comes to a grinding halt if we turn off the air and let
sliding friction act. Apparently the friction stops the motion.
But we are getting ahead of ourselves; let us return to the
properly functioning air track and try to generalize from our
experience.

It is possible to make a two dimensional air table analogous to
the one dimensional air track. (A smooth sheet of glass with a
flat piece of dry ice on it does pretty well. The evaporating dry
ice provides the gas cushion.) We find again that the undisturbed
rider moves with uniform velocity. Three dimensional isolated
motion is hard to observe, short of going into space, but let us for
the moment assume that our experience in one and two dimen-
sions also holds in three dimensions. We therefore surmise that
an object moves uniformly in space provided there are no external
influences.

Newton's First Law

In our discussion of the air track experiments, we glossed over an
important point. Motion has meaning only with respect to a par-
ticular coordinate system, and in describing motion it is essential
to specify the coordinate system we are using. For example, in
describing motion along the air track, we implicitly used a coor-
dinate system fixed to the track. However, we are free to choose
any coordinate system we please, including systems which are
moving with respect to the track. In a coordinate system moving
uniformly with respect to the track, the undisturbed rider moves
with constant velocity. Such a coordinate system is called an
inertial system. Not all coordinate systems are inertial; in a coor-
dinate system accelerating with respect to the track, the undis-
turbed rider does not have constant velocity. However, it is
always possible to find a coordinate system with respect to which
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isolated bodies move uniformly. This is the essence of Newton's
first law of motion.

Newton's first law of motion is the assertion that inertial systems
exist.

Newton's first law is part definition and part experimental fact.
Isolated bodies move uniformly in inertial systems by virtue of the
definition of an inertial system. In constrast, that inertial systems
exist is a statement about the physical world.

Newton's first law raises a number of questions, such as what
we mean by an "isolated body," but we will defer these temporarily
and go on.

Newton's Second Law

We now turn to how the rider on the air track behaves when it is
no longer isolated. Suppose that we pull the rider with a rubber
band. Nothing happens while the rubber band is loose, but as
soon as we pull hard enough to stretch the rubber band, the rider
starts to move. If we move our hand ahead of the rider so that
the rubber band is always stretched to the same standard length,
we find that the rider moves in a wonderfully simple way; its
velocity increases uniformly with time. The rider moves with con-
stant acceleration.

Now suppose that we try the same experiment with a different
rider, perhaps one a good deal larger than the first. Again, the
same rubber band stretched to the standard length produces a
constant acceleration, but the acceleration is different from that
in the first case. Apparently the acceleration depends not only
on what we do to the object, since presumably we do the
same thing in each case, but also on some property of the object,
which we call mass.

We can use our rubber band experiment to define what we mean
by mass. We start by arbitrarily saying that the first body has a
mass mi. (mi could be one unit of mass or x units of mass, where
x is any number we choose.) We then define the mass of the
second body to be

a2

where ax is the acceleration of the first body in our rubber band
experiment and a2 is the acceleration of the second body.
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Continuing this procedure, we can assign masses to other
objects by measuring their accelerations with the standard
stretched rubber band. Thus

a>i
m 3 = m i —

cii etc.
ra4 = nti —

Although this procedure is straightforward, there is no obvious
reason why the quantity we define this way is particularly impor-
tant. For instance, why not consider instead some other prop-
erty, call it property Z, such that Z2 = Zi(a1/a2)

2? The reason
is that mass is useful, whereas property Z (or most other quan-
tities you try) is not. By making further experiments with the
air track, for instance by using springs or magnets instead of a
rubber band, we find that the ratios of accelerations, hence the
mass ratios, are the same no matter how we produce the uni-
form accelerations, provided that we do the same thing to each
body. Thus, mass so defined turns out to be independent of
the source of acceleration and appears to be an inherent prop-
erty of a body. Of course, the actual mass value of an individual
body depends on our choice of mass unit. The important thing
is that two bodies have a unique mass ratio.

Our definition of mass is an example of an operational definition.
By operational we mean that the definition is dominantly in terms
of experiments we perform and not in terms of abstract concepts,
such as "mass is a measure of the resistance of bodies to a change
in motion." Of course, there can be many abstract concepts hid-
den in apparently simple operations. For instance, when we mea-
sure acceleration, we tacitly assume that we have a clear under-
standing of distance and time. Although our intuitive ideas are
adequate for our purposes here, we shall see when we discuss
relativity that the behavior of measuring rods and clocks is itself
a matter for experiment.

A second troublesome aspect of operational definitions is that
they are limited to situations in which the operations can actually
be performed. In practice this is usually not a problem; physics
proceeds by constructing a chain of theory and experiment which
allows us to employ convenient methods of measurement ulti-
mately based on the operational definitions. For instance, the
most practical way to measure the mass of a mountain is to
observe its gravitational pull on a test body, such as a hanging
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plumb bob. According to the operational definition, we should
apply a standard force and measure the mountain's acceleration.
Nevertheless, the two methods are directly related conceptually.

We defined mass by experiments on laboratory obiects; we can-
not say a priori whether the results are consistent on a much
larger or smaller scale. In fact, one of the major goals of physics
is to find the limitations of such definitions, for the limitations
normally reveal new physical laws. Nevertheless, if an opera-
tional definition is to be at all useful, it must have very wide appli-
cability. For instance, our definition of mass holds not only for
everyday objects on the earth but also, to a very high degree, for
planetary motion, motion on an enormously larger scale. It
should not surprise us, however, if eventually we find situations
in which the operations are no longer useful.

Now that we have defined mass, let us turn our attention to
force.

We describe the operation of acting on the test mass with a
stretched rubber band as "applying" a force. (Note that we have
sidestepped the question of what a force is and have limited our-
selves to describing how to produce it—namely, by stretching a
rubber band by a given amount.) When we apply the force, the
test mass accelerates at some rate, a. If we apply two standard
stretched rubber bands, side by side, we find that the mass accel-
erates at the rate 2a, and if we apply them in opposite directions,
the acceleration is zero. The effects of the rubber bands add
algebraically for the case of motion in a straight line.

We can establish a force scale by defining the unit force as the
force which produces unit acceleration when applied to the unit
mass. It follows from our experiments that F units of force
accelerate the unit mass by F units of acceleration and, from our
definition of mass, it will produce F X (1/m) units of acceleration
in mass m. Hence, the acceleration produced by force F acting
on mass m is a = F/m or, in a more familiar order, F = ma. In
the International System of units (SI), the unit of force is the new-
ton (N), the unit of mass is the kilogram (kg), and acceleration is
in meters per second2 (m/s2). Units are discussed further in
Sec. 2.3.

So far we have limited our experiments to one dimension.
Since acceleration is a vector, and mass, as far as we know, is a
scalar, we expect that force is also a vector. It is natural to think
of the force as pointing in the direction of the acceleration it pro-
duces when acting alone. This assumption appears trivial, but
it is not—its justification lies in experiment. We find that forces
obey the principle of superposition: The acceleration produced by
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several forces acting on a body is equal to the vector sum of the
accelerations produced by each of the forces acting separately.
Not only does this confirm the vector nature of force, but it also
enables us to analyze problems by considering one force at a
time.

Combining all these observations, we conclude that the total
force F on a body of mass m is F = 2JF», where Ft is the ith applied
force. If a is the net acceleration, and at the acceleration due to
Ft alone, then we have

F = 2Ft

= ma

or

F = ma.

This is Newton's second law of motion. It will underlie much of
our subsequent discussion.

It is important to understand clearly that force is not merely
a matter of definition. For instance, if the air track rider starts
accelerating, it is not sufficient to claim that there is a force acting
defined by F = ma. Forces always arise from interactions between
systems, and if we ever found an acceleration without an inter-
action, we would be in a terrible mess. It is the interaction which
is physically significant and which is responsible for the force.
For this reason, when we isolate a body sufficiently from its sur-
roundings, we expect the body to move uniformly in an inertial
system. Isolation means eliminating interactions. You may
question whether it is always possible to isolate a body. For-
tunately, as far as we know, the answer is yes. All known inter-
actions decrease with distance. (The forces which extend over
the greatest distance are the familiar gravitational and Coulomb
forces. They decrease as 1/r2, where r is the distance. Most
forces decrease much more rapidly. For example, the force
between separated atoms decreases as 1/r7.) By moving the
test body sufficiently far from everything else, the interactions
can be reduced as much as desired.

Newton's Third Law

The fact that force is necessarily the result of an interaction
between two systems is made explicit by Newton's third law. The
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third law states that forces always appear in pairs: if body b exerts
force Fa on body a, then there must be a force F6 acting on body
b, due to body a, such that F6 = —Fa. There is no such thing as
a lone force without a partner. As we shall see in the next chap-
ter, the third law leads directly to the powerful law of conservation
of momentum.

We have argued that a body can be isolated by removing it
sufficiently far from other bodies. However, the following prob-
lem arises. Suppose that an isolated body starts to accelerate
in defiance of Newton's second law. What prevents us from
explaining away the difficulty by attributing the acceleration to
carelessness in isolating the system? If this option is open to us,
Newton's second law becomes meaningless. We need an inde-
pendent way of telling whether or not there is a physical interac-
tion on a system. Newton's third law provides such a test. If
the acceleration of a body is the result of an outside force, then
somewhere in the universe there must be an equal and opposite
force acting on another body. If we find such a force, the
dilemma is resolved; the body was not completely isolated. The
interaction may be new and interesting, but as long as the forces
are equal and opposite, Newton's laws are satisfied.

If an isolated body accelerates and we cannot find some external
object which suffers an equal and opposite force, then we are in
trouble. As far as we know this has never occurred. Thus New-
ton's third law is not only a vitally important dynamical tool, but
it is also an important logical element in making sense of the first
two laws.

Newton's second law F = ma holds true only in inertial systems.
The existence of inertial systems seems almost trivial to us, since
the earth provides a reasonably good inertial reference frame for
everyday observations. However, there is nothing trivial about
the concept of an inertial system, as the following example shows.

Example 2.1 Astronauts in Space—Inertial Systems and Fictitious Forces

Two spaceships are moving in empty space chasing an unidentified
flying object, possibly a flying saucer. The captains of the two ships,
A and B, must find out if the saucer is flying freely or if it is accelerating.
A, B, and the saucer are all moving along a straight line.

The captain of A sets to work and measures the distance to the saucer
as a function of time. In principle, he sets up a coordinate system along
the line of motion with his ship as origin and notes the position of the
saucer, which he calls XA(1). (In practice he uses his radar set to mea-
sure the distance to the saucer.) From xA(t) he calculates the velocity
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VA = XA and the acceleration CLA = X'A- The results are shown in the
sketches. The captain of .1 concludes that the saucer has a positive
acceleration aA = 1,000 m/s2. He therefore assumes that its engines
are on and that the force on the saucer is

FA = aAM
= 1,0001/ newtons,

where M is the saucer's mass in kilograms.
The captain of B goes through the same procedure. He finds that the

acceleration is aB = 950 m/s2 and concludes that the force on the saucer
is

FB = aBM

= 95071/ newtons.

This presents a serious problem. There is nothing arbitrary about
force; if different observers obtain different values for the force, at
least one of them must be mistaken. The captains of .1 and B have
confidence in the laws of mechanics, so they set about resolving the dis-
crepancy. In particular, they recall that Newton's laws hold only in iner-
tial systems. How can they decide whether or not their systems are
inertial?

A's captain sets out by checking to see if all his engines are off. Since
they are, he suspects that he is not accelerating and that his spaceship
defines an inertial system. To check that this is the case, he undertakes
a simple but sensitive experiment. He observes that a pencil, carefully
released at rest, floats without motion. He concludes that the pencil's
acceleration is negligible and that he is in an inertial system. The rea-
soning is as follows: as long as he holds the pencil it must have the same
instantaneous velocity and acceleration as the spaceship. However,
there are no forces acting on the pencil after it is released, assuming
that we can neglect gravitational or electrical interactions with the space-
ship, air currents, etc. The pencil, then, can be presumed to represent
an isolated body. If the spaceship is itself accelerating, it will catch up
with the pencil—the pencil will appear to accelerate relative to the cabin.
Otherwise, the spaceship must itself define an inertial system.

The determination of the force on the saucer by the captain of A
must be correct because A is in an inertial system. But what can we
say about the observations made by the captain of B? To answer this
problem, we look at the relation of xA and xB. From the sketch,
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XA(f) = XB(t) + X(t),

where X(t) is the position of B relative to A. Differentiating twice with
respect to time, we have

xA = xB + X. 1

Since system A is inertial, Newton's second law for the saucer is

F**e = MxA 2

where FtTXie is the true force on the saucer.
What about the observations made by the captain of B? The apparent

force observed by B is

^.apparent = MxB- 3

Using the results of (1) and (2), we have

^.apparent = MxA ~ MX

= FtIue - MX. 4

B will not measure the true force unless X = 0. However, X = 0
only when B moves uniformly with respect to A. As we suspect, this is
not the case here. The captain of B has accidently left on a rocket
engine, and he is accelerating away from A at 50 m/s2. After shutting
off the engine, he obtains the same value for the force on the saucer
as does A.

Although we considered only motion along a line in Example
2.1, it is easy to generalize the result to three dimensions. If R is
the vector from the origin of an inertial system to the origin of
another coordinate system, we have

•"apparent = ^true lVLt\.

If R = 0, then Fapparent = FtrUe» which means that the second coor-
dinate system is also inertial. In fact, we have merely proven
what we asserted earlier, namely, that any system moving uni-
formly with respect to an inertial system is also inertial.

Sometimes we would like to carry out measurements in non-
inertial systems. What can we do to get the correct equations of
motion? The answer lies in the relation FapParent = Ftrue — MR.
We can think of the last term as an additional force, which we
call a fictitious force. (The term fictitious indicates that there is
no real interaction involved.) We then write

"apparent •fictitious*
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where Ffictitious = —MR. Here M is the mass of the particle and
R is the acceleration of the noninertial system with respect to any
inertial system.

Fictitious forces are useful in solving certain problems, but they
must be treated with care. They generally cause more confusion
then they are worth at this stage of your studies, and for that rea-
son we shall avoid them for the present and agree to use inertial
systems only. Later on, in Chap. 8, we shall examine fictitious
forces in detail and learn how to deal with them.

Although Newton's laws can be stated in a reasonably clear
and consistent fashion, it should be realized that there are
fundamental difficulties which cannot be argued away. We shall
return to these in later chapters after we have had a chance to
become better acquainted with the concepts of newtonian physics.
Some points, however, are well to bear in mind now.

1. You have had to take our word that the experiments we used
to define mass and to develop the second law of motion really give
the results claimed. It should come as no surprise (although it
was a considerable shock when it was first discovered) that this
is not always so. For instance, the mass scale we have set up is
no longer consistent when the particles are moving at high speeds.
It turns out that instead of the mass we defined, called the rest
mass m0, a more useful quantity is ra = ra0/V 1 — v2/c2, where
c is the speed of light and v is the speed of the particle. For the
case v « c, m and m0 differ negligibly. The reason that our table-
top experiments did not lead us to the more general expression
for mass is that even for the largest everyday velocities, say the
velocity of a spacecraft going around the earth, v/c « 3 X 10~5,
and m and m0 differ by only a few parts in 1010.

2. Newton's laws describe the behavior of point masses. In the
case where the size of the body is small compared with the inter-
action distance, this offers no problem. For instance, the earth
and sun are so small compared with the distance between them
that for many purposes their motion can be adequately described
by considering the motion of point masses located at the center of
each. However, the approximation that we are dealing with point
masses is fortunately not essential, and if we wish to describe the
motion of large bodies, we can readily generalize Newton's laws,
as we shall do in the next chapter. It turns out to be not much
more difficult to discuss the motion of a rigid body composed of
1024 atoms than the motion of a single point mass.
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3. Newton's laws deal with particles and are poorly suited for
describing a continuous system such as a fluid. We cannot
directly apply F = ma to a fluid, for both the force and the mass
are continuously distributed. However, newtonian mechanics can
be extended to deal with fluids and provides the underlying prin-
ciples of fluid mechanics.

One system which is particularly troublesome for our present
formulation of newtonian mechanics is the electromagnetic field.
Paradoxes can arise when such a field is present. For instance,
two charged bodies which interact electrically actually interact via
the electric fields they create. The interaction is not instanta-
neously transmitted from one particle to the other but propagates
at the velocity of light. During the propagation time there is an
apparent breakdown of Newton's third law; the forces on the
particles are not equal and opposite. Similar problems arise in
considering gravitational and other interactions. However, the
problem lies not so much with newtonian mechanics as with its
misapplication. Simply put, fields possess mechanical properties
like momentum and energy which must not be overlooked. From
this point of view there is no such thing as a simple two particle
system. However, for many systems the fields can be taken
into account and the paradoxes can be resolved within the new-
tonian framework.

2.3 Standards and Units

Length, time, and mass play a fundamental role in every branch
of physics. These quantities are defined in terms of certain fun-
damental physical standards which are agreed to by the scientific
community. Since a particular standard generally does not have
a convenient size for every application, a number of systems of
units have come into use. For example, the centimeter, the ang-
strom, and the yard are all units of length, but each is defined in
terms of the standard meter. There are a number of systems of
units in widespread use, the choice being chiefly a matter of cus-
tom and convenience. This section presents a brief description
of the current standards and summarizes the units which we shall
encounter.

The Fundamental Standards

The fundamental standards play two vital roles. In the first
place, the precision with which these standards can be defined



SEC. 2.3 STANDARDS AND UNITS 65

and reproduced limits the ultimate accuracy of experiments. In
some cases the precision is almost unbelievably high—time, for
instance, can be measured to a few parts in 1012. In addition,
agreeing to a standard for a physical quantity simultaneously pro-
vides an operational definition for that quantity. For example,
the modern view is that time is what is measured by clocks, and
that the properties of time can be understood only by observing
the properties of clocks. This is not a trivial point; the rates of
all clocks are affected by motion and by gravity (as we shall discuss
in Chaps. 8 and 12), and unless we are willing to accept the fact
that time itself is altered by motion and gravity, we are led into
contradictions.

Once a physical quantity has been defined in terms of a mea-
surement procedure, we must appeal to experiment, not to pre-
conceived notions, to understand its properties. To contrast this
viewpoint with a nonoperational approach, consider, for example,
Newton's definition of time: "Absolute, true, and mathematical
time, of itself, and from its own nature, flows equally without rela-
tion to anything external." This may be intuitively and philo-
sophically appealing, but it is hard to see how such a definition
can be applied. The idea is metaphysical and not of much use in
physics.

Once we have agreed on the operation underlying a particular
physical quantity, the problem is to construct the most precise
practical standard. Until recently, physical standards were man-
made, in the sense that they consisted of particular objects to
which all other measurements had to be referred. Thus, the
unit length, the meter, was defined to be the distance between two
scratches on a platinum bar. Such man-made standards have a
number of disadvantages. Since the standard must be carefully
preserved, actual measurements are often done with secondary
standards, which causes a loss of accuracy. Furthermore, the
precision of a man-made standard is intrinsically limited. In the
case of the standard meter, precision was found to be limited by
fuzziness in the engraved lines which defined the meter interval.
When more accurate optical techniques for locating position were
developed in the latter part of the nineteenth century, it was rea-
lized that the standard meter bar was no longer adequate.

Length is now defined by a natural, rather than man-made,
standard. The meter is defined to be a given multiple of the
wavelength of a particular spectral line. The advantage of such
a unit is that anyone who has the required optical equipment can
reproduce it. Also, as the instrumentation improves, the accuracy
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of the standard will correspondingly increase. Most of the stan-
dards of physics are now natural.

Here is a brief account of the current status of the standards of
length, time, and mass.

Length The meter was intended to be one ten-millionth of the dis-
tance from the equator to the pole of the earth along the Dunkirk-
Barcelona line. This cannot be measured accurately (in fact it
changes due to distortions of the earth), and in 1889 it was agreed
to define the meter as the separation between two scratches in a
platinum-iridium bar which is preserved at the International
Bureau of Weights and Measures, Sevres, France. In 1960 the
meter was redefined to be 1,650,763.73 wavelengths of the orange-
red line of krypton 86. The accuracy of this standard is a few
parts in 108.

Recent advances in laser techniques provide methods which
should allow the velocity of light to be measured to better than 1
part in 108. It is likely that the velocity of light will replace length
as a fundamental quantity. In this case the unit of length would
be derived from velocity and time.

Time Time has traditionally been measured in terms of rotation of
the earth. Until 1956 the basic unit, the second, was defined as
1/86,400 of the mean solar day. Unfortunately, the period of
rotation of the earth is not very uniform. Variations of up to
one part in 107 per day occur due to atmospheric tides and changes
in the earth's core. The motion of the earth around the sun is
not influenced by these perturbations, and until recently the mean
solar year was used to define the second. Here the accuracy was
a few parts in 109. Fortunately, time can now be measured in
terms of a natural atomic frequency. In 1967 the second was
defined to be the time required to execute 9,192,637,770 cycles of
a hyperfine transition in cesium 133. This transition frequency
can be reliably measured to a few parts in 1012, which means
that time is by far the most accurately determined fundamental
quantity.

Mass Of the three fundamental units, only mass is defined in
terms of a man-made standard. Originally, the kilogram was
defined to be the mass of 1,000 cubic centimeters of water at a
temperature of 4 degrees Centigrade. The definition is difficult to
apply, and in 1889 the kilogram was defined to be the mass of a
platinum-iridium cylinder which is maintained at the International
Bureau of Weights and Measures. Secondary standards can be
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compared with it to an accuracy of one part in 109. Perhaps some-
day we will learn how to define the kilogram in terms of a natural
unit, such as the mass of an atom. However, at present nobody
knows how to count reliably the large number of atoms needed
to constitute a useful sample. Perhaps you can discover a
method.

Systems of Units

Although the standards for mass, length, and time are accepted
by the entire scientific community, there are a variety of systems
of units which differ in the scaling factors. The most widely
used system of units is the International System, abbreviated SI
(for Systeme International d'Unites). It is the legal system in
most countries. The SI units are meter, kilogram, and second;
SI replaces the former mks system. The related cgs system,
based on the centimeter, gram, and second, is also commonly
used. A third system, the English system of units, is used for non-
scientific measurements in Britain and North America, although
Britain is in the process of switching to the metric system. It is
essential to know how to work problems in any system of units.
We shall work chiefly with SI units, with occasional use of the cgs
system and one or two lapses into the English system.

Here is a table listing the names of units in the SI, cgs, and
English systems.

Length
Mass
Time

SI

1 meter (m)
1 kilogram (kg)
1 second (s)

Acceleration 1 m/s2

Force

Some

1 m =
l k g =
1 N =

1 newton (N)
= 1 kg-m/s2

useful relations between

100 cm
1000 g
105 dyne

1 in = TV
1 slug
1 N

CGS

1 centimeter (cm)
1 gram (g)
1 second (s)
1 cm/s2

1 dyne
= 1 g-cm/s2

ENGLISH

1 foot (ft)
1 slug
1 second (s)
1 ft/s2

1 pound (Ib)
= 1 slug-ft/s2

these units systems are:

ft « 2.54 cm
« 14.6 kg
« 0.224 Ib

The word pound sometimes refers to a unit of mass. In this con-
text it stands for the mass which experiences a gravitational force
of one pound at the surface of the earth, approximately 0.454 kg.
We shall avoid this confusing usage.
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4 ^ i
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2.4 Some Applications of Newton's Laws

Newton's laws are meaningless equations until we know how to
apply them. A number of steps are involved which, once learned,
are so natural that the procedure becomes intuitive. Our aim in
this section is to outline a method of analyzing physical problems
and to illustrate it by examples. A note of reassurance lest you
feel that matters are presented too dogmatically: There are many
ways of attacking most problems, and the procedure we suggest
is certainly not the only one. In fact, no cut-and-dried procedure
can ever substitute for intelligent analytical thinking. However,
the systematic method suggested here will be helpful in getting
started, and we urge you to master it even if you should later
resort to shortcuts or a different approach.

Here are the steps:

1. Mentally divide the system1 into smaller systems, each of which
can be treated as a point mass.

2. Draw a force diagram for each mass as follows:
a. Represent the body by a point or simple symbol, and label it.
b. Draw a force vector on the mass for each force acting on it.

Point 2b can be tricky. Draw only forces acting on the body,
not forces exerted by the body. The body may be attached to
strings, pushed by other bodies, etc. We replace all these physi-
cal interactions with other bodies by a system of forces; according
to Newton's laws, only forces acting on the body influence its
motion.

As an example, here are two blocks at rest on a table top.
The force diagram for A is shown at left. Fi is the force exerted
on block A by block B, and WA is the force of gravity on A, called
the weight

Similarly, we can draw the force diagram for block B. WB is
the force of gravity on B, N is the normal (perpendicular) force
exerted by the table top on B, and F2 is the force exerted by A
on B. There are no other physical interactions that would pro-
duce a force on B.

It is important not to confuse a force with an acceleration; draw
only real forces. Since we are using only inertial systems for the
present, all the forces are associated with physical interactions.
For every force you should be able to answer the question, "What

1 We use "system" here to mean a collection of physical objects rather than a
coordinate system. The meaning should be clear from the context.
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exerts this force on the body?" (We shall see how to use so-called
fictitious forces in Chap. 8.1)

3. Introduce a coordinate system. The coordinate system must
be inertial—that is, it must be fixed to an inertial frame. With
the force diagram as a guide, write separately the component
equations of motion for each body. By equation of motion we
mean an equation of the form Fu + F2x + • • • = Max, where
the x component of each force on the body is represented by a
term on the left hand side of the equation. The algebraic sign
of each component must be consistent with the force diagram
and with the choice of coordinate system.

For instance, returning to the force diagram for block A, New-
ton's second law gives

! i i f I " Fi + W^ = mAaA.
\A ! Since Fx = F j , \NA = -WA], we have

0 = mA(aA)x

and

F1 - WA = mA(aA)y.

The x equation of motion is trivial and normally we omit it, writing
simply

Fi -WA = rnAaA.

The equation of motion for B is

N — F2 — WB =

4. If two bodies in the same system interact, the forces between
them must be equal and opposite by Newton's third law. These
relations should be written explicitly.

For example, in the case of the two blocks on the tabletop,
Fi = — F2. Hence

F1 = F2.

Note that Newton's third law never relates two forces acting on
the same body; forces on two different bodies must be involved.
1 The most notorious fictitious force is the centrifugal force. Long experience has
shown that using this force before one has a really solid grasp of Newton's laws
invariably causes confusion. Besides, it is only one of several fictitious forces
which play a role in rotating systems. For both these reasons, we shall strictly
avoid centrifugal forces for the present.
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5. In many problems, bodies are constrained to move along cer-
tain paths. A pendulum bob, for instance, moves in a circle, and
a block sliding on a tabletop is constrained to move in a plane.
Each constraint can be described by a kinematical equation known
as a constraint equation. Write each constraint equation.

Sometimes the constraints are implicit in the statement of the
problem. For the two blocks on the tabletop, there is no vertical
acceleration, and the constraint equations are

(aA)y = 0 (aB)y = 0.

6. Keep track of which variables are known and which are
unknown. The force equations and the constraint equations
should provide enough relations to allow every unknown to be
found. If an equation is overlooked, there will be too few equa-
tions for the unknowns.

Completing the problem of the two blocks on the table, we have

Fi- WA = mAaA

N — F2 — WB = mBaB

Fi = F2 From Newton's third law

aA = 0

[Equations of motion

__ [Constraint equations

All that remains is the mathematical task of solving the equations.
We find

FX = F2 = WA

N = wA + WB.
Here are a few examples which illustrate the application of

Newton's laws.
The main point of the first example is to help us distinguish

between the force we apply to an object and the force it exerts on
us. Physiologically, these forces are often confused. If you
push a book across a table, the force you feel is not the force
that makes the book move; it is the force the book exerts on you.
According to Newton's third law, these two forces are always
equal and opposite. If one force is limited, so is the other.

Example 2.2 The Astronauts' Tug-of-war

Two astronauts, initially at rest in free space, pull on either end of a
rope. Astronaut Alex played football in high school and is stronger than
astronaut Bob, whose hobby was chess. The maximum force with which
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Alex can pull, FA, is larger than the maximum force with which Bob can
pull, FB. Their masses are MA and MB, and the mass of the rope, Mr,
is negligible. Find their motion if each pulls on the rope as hard as hecan.

Here are the force diagrams. For clarity, we show the rope as a line.

UA ur UB.

Note that the forces FA and FB exerted by the astronauts act on the
rope, not on the astronauts. The forces exerted by the rope on the
astronauts are FA and FB - The diagram shows the directions of
the forces and the coordinate system we have adopted; acceleration to
the right is positive.

By Newton's third law,

F'B = FB.

The equation of motion for the rope is

FB - FA = Mrar. 2

Only motion along the line of the rope is of interest, and we omit the
equations of motion in the remaining two directions. There are no con-
straints, and we proceed to the solution.

Since the mass of the rope, Mr, is negligible, we take Mr = 0 in
Eq. (2). This gives FB — FA = 0 or

FB = FA.

The total force on the rope is FB to the right and FA to the left. These
forces are equal in magnitude, and the total force on the rope is zero.
In general, the total force on any body of negligible mass must be effec-
tively zero; a finite force acting on zero mass would produce an infinite
acceleration.

Since FB = FA, Eq. (1) gives Ff
A = FA = FB = Fr

B. Hence

The astronauts each pull with the same force. Physically, there is a
limit to how hard Bob can grip the rope; if Alex tries to pull too hard,
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the rope slips through Bob's fingers. The force Alex can exert is limited
by the strength of Bob's grip. If the rope were tied to Bob, Alex could
exert his maximum pull.

The accelerations of the two astronauts are

MB

The negative sign means that aB is to the left. In many problems the
directions of some acceleration or force components are initially unknown.
In writing the equations of motion, any choice is valid, provided we are
consistent with the convention assumed in the force diagram. If the
solution yields a negative sign, the acceleration or force is opposite to
the direction assumed.

The next example shows that in order for a compound system
to accelerate, there must be a net force on each part of the
system.

Example 2.3 Freight Train

M M M F Three freight cars of mass M are pulled with force F by a locomotive.
n~l I 1 _ IT1 1 J~J~n I — • Friction is negligible. Find the forces on each car.

r * ** m* ffi " m^ 'm' Before drawing the force diagram, it is worth thinking about the system
as a whole. Since the cars are joined, they are constrained to have the
same acceleration. Since the total mass is 3M, the acceleration is

» a
I T A force diagram for the last car is shown at the left. W is the
j , ! * F weight and N is the upward force exerted by the track. The vertical
I J acceleration is zero, so that N = W. Fx is the force exerted by the

next car. We have

^i = Ma

= M( —
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» g Now let us consider the middle car. The vertical forces are as before,
I i and we omit them. F\ is the force exerted by the last car, and F2 is the

^ I • : *• force exerted by the first car. The equation of motion is
F[ i | F2

F2 — F'i = Ma.

By Newton's third law, F[ = Fx = F/3. Since a = F/3A1, we have

3M

f 1 The horizontal forces on the first car are F, to the right, and

i l
F2 I i F , 2F

F' F

to the left. Each car experiences a total force F/3 to the right.
Here is a slightly more general way to look at the problem. Consider

a string of N cars, each of mass M, pulled by a force F. The accelera-

m m i m ,

n ll m ll m 11 m

tion is a = F/(NM). To find the force Fn pulling the last n cars, note
that Fn must give the mass nAI an acceleration F/(NM). Hence

F
Fn = nM NM

-5'-
The force is proportional to the number of cars pulled.

In systems composed of several bodies, the accelerations are
often related by constraints. The equations of constraint can
sometimes be found by simple inspection, but the most general
approach is to start with the coordinate geometry, as shown in the
next example.
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Example 2.4 Constraints

h-y

a. WEDGE AND BLOCK
A block moves on a wedge which in turns moves on a horizontal table,
as shown in the sketch. The wedge angle is 0. How are the accelera-
tions of the block and the wedge related?

As long as the wedge is in contact with the table, we have the trivial
constraint that the vertical acceleration of the wedge is zero. To find
the less obvious constraint, let X be the horizontal coordinate of the end
of the wedge and let x and y be the horizontal and vertical coordinates of
the block, as shown. Let h be the height of the wedge.

From the geometry, we see that

(x - X) = (h - y) cot 0.

Differentiating twice with respect to time, we obtain the equation of
constraint

x - X = -y cot 0. 1

A few comments are in order. Note that the coordinates are inertial.
We would have trouble using Newton's second law if we measured the
position of the block with respect to the wedge; the wedge is accelerating
and cannot specify an inertial system. Second, unimportant parameters,
like the height of the wedge, disappear when we take time derivatives,
but they can be useful in setting up the geometry. Finally, constraint
equations are independent of applied forces. For example, even if fric-
tion between the block and wedge affects their accelerations, Eq. (1) is
valid as long as the bodies are in contact.

b. MASSES AND PULLEY
Two masses are connected by a string which passes over a pulley accel-
erating upward at rate A, as shown. Find how the accelerations of the
bodies are related. Assume that there is no horizontal motion.

We shall use the coordinates shown in the drawing. The length of
the string, Z, is constant. Hence, if yp is measured to the center of the
pulley of radius R,

I = TTR + (yP - 2/0 + (yP - 2/2). 2

Differentiating twice with respecttotime, we find the constraint condition

0 = 2yp - y, - y2.

Using A = yp, we have

A = i(yi-\-y2)-

c. PULLEY SYSTEM
The pulley system shown on the opposite page is used to hoist the block.
How does the acceleration of the end of the rope compare with the
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acceleration of the block? Using the coordinates indicated, the length of
the rope is given by

I = X + TR + (X - h) + TR + (x - h),

where R is the radius of the pulleys. Hence

X = -ix.

The block accelerates half as fast as the hand, and in the opposite
direction.

Our examples so far have involved linear motion only. Let us
look at the dynamics of rotational motion.

A particle undergoing circular motion must have a radial accel-
eration. This sometimes causes confusion, since our intuitive
idea of acceleration usually relates to change in speed rather than
to change in direction of motion. For this reason, we start with as
simple an example as possible.

Example 2.5 Block on String 1

Mass m whirls with constant speed v at the end of a string of length R.
Find the force on m in the absence of gravity or friction.

The only force on m is the string force T, which acts toward the center,
as shown in the diagram. It is natural to use polar coordinates. Note
that according to the derivation in Sec. 1.9, the radial acceleration is
ar = r — rd2, where 6 is the angular velocity. ar is positive outward.
Since T is directed toward the origin, T = — Tr and the radial equation
of motion is

- T = mar

= m{f - r$2).

r = R = 0 and 6 = v/R. Hence ar -R(v/R)2 = -v2/R and

mv2

\ Note that T is directed toward the origin; there is no outward force
on m. If you whirl a pebble at the end of a string, you feel an outward
force. However, the force you feel does not act on the pebble, it acts
on you. This force is equal in magnitude and opposite in direction to
the force with which you pull the pebble, assuming the string's mass to
be negligible.

In the following example both radial and tangential acceleration
play a role in circular motion.
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Example 2.6 Block on String 2

Mass m is whirled on the end of a string length R. The motion is in a
vertical plane in the gravitational field of the earth. The forces on m
are the weight W down, and the string force T tovyard the center. The
instantaneous speed is v, and the string makes angle 0 with the hori-
zontal. Find T and the tangential acceleration at this instant.

The lower diagram shows the forces and unit vectors r and 6. The
radial force is —T— W sin 0, so the radial equation of motion is

-{T + IF sin 0) = mar

. = m(r - rd2). 1

The tangential force is —IF cos 0. Hence

— W cos 0 = mao
= m(r9 + 2r6). 2

W Since r = R = constant, ar = —R(62) = —v2/R, and Eq. (1) gives

The string can pull but not push, so that T cannot be negative. This
requires that mv2/R > W sin 0. The maximum value of W sin 0 occurs
when the mass is vertically up; in this case mv2/R > W. If this condi-
tion is not satisfied, the mass does not follow a circular path but starts to
fall; r is no longer zero.

The tangential acceleration is given by Eq. (2). Since f = 0 we have

ae = Rd
I f cos 0

m

The mass does not move with constant speed; it accelerates tangentially.
On the downswing the tangential speed increases, on the upswing it
decreases.

The next example involves rotational motion, translational
motion, and constraints.

Example 2.7 The Whirling Block

A horizontal frictionless table has a small hole in its center. Block A on
the table is connected to block B hanging beneath by a string of negligible
mass which passes through the hole.

Initially, B is held stationary and A rotates at constant radius r0 with
steady angular velocity co0. If B is released at t = 0, what is its accel-
eration immediately afterward?

The force diagrams for A and B after the moment of release are shown
in the sketches.
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M jff The vertical forces acting on A are in balance and we need not consider
them. The only horizontal force acting on A is the string force T. The
forces on B are the string force T and the weight WB.

It is natural to use polar coordinates r, 6 for A, and a single linear
coordinate z for B, as shown in the force diagrams. As usual, the unit
vector r is radially outward. The equations of motion are

-T = MA(X - r$2) Radial 1

0 = M A(r'B + If 6) Tangential 2

Tf B - T7 = MB2 Vertical. 3

Since the length of the string, I, is constant, we have

Differentiating Eq. (4) twice with respect to time gives us the constraint
equation

f = - 2 . 5

The negative sign means that if A moves inward, B falls. Combining
Eqs. (1), (3), and (5), we find

.. _ WB - MAr62

MA + MB

It is important to realize that although acceleration can change instan-
taneously, velocity and position cannot. Thus immediately after B is
released, r = ro and $ = wo- Hence

= WB -

M

2(0) can be positive, negative, or zero depending on the value of the
numerator in Eq. (6); if OJ0 is large enough, block B will begin to rise after
release.

The apparently simple problem in the next example has some
unexpected subtleties.

Example 2.8 The Conical Pendulum

Mass M hangs from a string of length I which is attached to a rod rotating
at constant angular frequency co, as shown in the drawing on the next
page. The mass moves with steady speed in a circular path of constant
radius. Find a, the angle the string makes with the vertical.

We start with the force diagram. T is the string force and W is the
weight of the bob. (Note that there are no other forces on the bob. If
this is not clear, you are most likely confusing an acceleration with a
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force—a serious error.) The vertical equation of motion is

T cos a - W = 0

because y is constant and y is therefore zero.

To find the horizontal equation of motion note that the bob is accel-
erating in the r direction at rate ar == — w2r. Then

-T s\n a = -Afrco2. 2

Since r = I sin a we have

T sin a = Mlai2 sin a

or
T7 =

Combining Eqs. (1) and (3) gives

Mia2 cos a=W.

As we shall discuss in Sec. 2.5, W = Mg, where M is the mass and g
is known as the acceleration due to gravity. We obtain

Y>osa =

\ cos a = 1

Unstable

cos a = -£-•
Zco2

This appears to be the desired solution. For co —• °o, cos a —» 0 and
a—> TT/2. At high speeds the bob flies out until it is almost horizontal.
However, at low speeds the solution does not make sense. As co —> 0,
our solution predicts cos a—> oo, which is nonsense since cos a < 1.
Something has gone wrong. Here is the trouble.

Our solution predicts cos a > 1 for co < vg/l. When co = y/g/l,
cos a = 1 and sin a — 0; the bob simply hangs vertically. In going from
Eq. (2) to Eq. (3) we divided both sides of Eq. (2) by sin a and, in this case
we divided by 0, which is not permissible. However, we see that we have
overlooked a second possible solution, namely, sin a = 0, T — W, which
is true for all values of co. The solution corresponds to the pendulum
hanging straight down. Here is a plot of the complete solution.

Physically, for co < *sfgjl the only acceptable solution is a = 0,

cos a — 1. For co > 'Vg/l there are two acceptable solutions:

1. cos a — 1

2. cos a = — •
Zco2

Solution 1 corresponds to the bob rotating rapidly but hanging verti-
cally. Solution 2 corresponds to the bob flying around at an angle with
the vertical. For co > Wg/l, solution 1 is unstable—if the system is in
that state and is slightly perturbed, it will jump outward. Can you see
why this is so?
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The moral of this example is that you have to be sure that the mathe-
matics makes good physical sense.

2.5 The Everyday Forces of Physics

When a physicist sets out to design an accelerator, he uses the
laws of mechanics and his knowledge of electric and magnetic
forces to determine the paths that the particles will follow. Pre-
dicting motion from known forces is an important part of physics
and underlies most of its applications. Equally important, how-
ever, is the converse process of deducing the physical interaction
by observing the motion; this is how new laws are discovered. A
classic example is Newton's deduction of the law of gravitation
from Kepler's laws of planetary motion. The current attempt to
understand the interactions between elementary particles from
high energy scattering experiments provides a more contemporary
illustration.

Unscrambling experimental observations to find the force can be
difficult. In a facetious mood, Eddington once said that force is
the mathematical expression we put into the left hand side of
Newton's second law to obtain results that agree with observed
motions. Fortunately, force has a more concrete physical reality.

Much of our effort in the following chapters will be to learn how
systems behave under applied forces. If every pair of particles
in the universe had its own special interaction, the task would be
impossible. Fortunately, nature is kinder than this. As far as
we know, there are only four fundamentally different types of
interactions in the universe: gravity, electromagnetic interactions,
the so-called weak interaction, and the strong interaction.

Gravity and the electromagnetic interactions can act over a
long range because they decrease only as the inverse square of
the distance. However, the gravitational force always attracts,
whereas electrical forces can either attract or repel. In large
systems, electrical attraction and repulsion cancel to a high
degree, and gravity alone is left. For this reason, gravitational
forces dominate the cosmic scale of our universe. In contrast,
the world immediately around us is dominated by the electrical
forces, since they are far stronger than gravity on the atomic
scale. Electrical forces are responsible for the structure of atoms,
molecules, and more complex forms of matter, as well as the
existence of light.

The weak and strong interactions have such short ranges that
they are important only at nuclear distances, typically 10~15 m.
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They are negligible even at atomic distances, 10"10 m. As its
name implies, the strong interaction is very strong, much stronger
than the electromagnetic force at nuclear distances. It is the
"glue" that binds the atomic nucleus, but aside from this it has
little effect in the everyday world. The weak interaction plays a
less dramatic role; it mediates in the creation and destruction of
neutrinos—particles of no mass and no charge which are essential
to our understanding of matter but which can be detected only by
the most arduous experiments.

Our object in the remainder of the chapter is to become familiar
with the forces which are important in everyday mechanics. Two
of these, the forces of gravity and electricity, are fundamental and
cannot be explained in simpler terms. The other forces we shall
discuss, friction, the contact force, and the viscous force, can be
understood as the macroscopic manifestation of interatomic
forces.

Gravity, Weight, and the Gravitational Field

Gravity is the most familiar of the fundamental forces. It has
close historical ties to the development of mechanics; Newton
discovered the law of universal gravitation in 1666, the same year
that he formulated his laws of motion. By calculating the motion
of two gravitating particles, he was able to derive Kepler's empiri-
cal laws of planetary motion. (By accomplishing all this by age
26, Newton established a tradition which still maintains—that great
advances are often made by young physicists.)

According to Newton's law of gravitation, two particles attract
each other with a force directed along their line of centers. The
magnitude of the force is proportional to the product of the masses
and decreases as the inverse square of the distance between the
particles.

In verbal form the law is bulky and hard to use. However, we
can reduce it to a simple mathematical expression.

Consider two particles, a and b, with masses Ma and Mbf respec-
tively, separated by distance r. Let F6 be the force exerted on
particle b by particle a. Our verbal description of the magnitude
of the force is summarized by

lwm , GMaMb

G is a constant of proportionality called the gravitational constant
Its value is found by measuring the force between masses in a
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known geometry. The first measurements were performed by
Henry Cavendish in 1771 using a torsion balance. The modern
value of G is 6.67 X lO"11 N'm2/kg2. (G is the least accurately
known of the fundamental constants. Perhaps you can devise a
new way to measure it more precisely.) Experimentally, G is the
same for all materials—aluminum, lead, neutrons, or what have
you. For this reason, the law is called the universal law of
gravitation.

The gravitational force between two particles is central (along
the line of centers) and attractive. The simplest way to describe
these properties is to use vectors. By convention, we introduce
a vector rah from the particle exerting the force, particle a in this
case, to the particle experiencing the force, particle b. Note that
|ra&| = r. Using the unit vector rab = rah/r, we have

GMaMb.
F& = — ra&.

r2

The negative sign indicates that the force is attractive. The force
on a due to b is

_ GMaMb „ _ GMaMb „ _
Fa — 1 T&a — H tab — ~^bt

r2 r2

since r6a = — ?a&. The forces are equal and opposite, and New-
ton's third law is automatically satisfied.

The gravitational force has a unique and mysterious property.
Consider the equation of motion of particle b under the gravita-
tional attraction of particle a.

GMaMh.
F& = — Tab

r2

= Mbab

or

The acceleration of a particle under gravity is independent of its
mass! There is a subtle point connected with our cancelation of
Mb, however. The "mass" (gravitational mass) in the law of gravi-
tation, which measures the strength of gravitational interaction, is
operationally distinct from the "mass" (inertial mass) which char-
acterizes inertia in Newton's second law. Why gravitational mass
is proportional to inertial mass for all matter is one of the great
mysteries of physics. However, the proportionality has been
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experimentally verified to very high accuracy, approximately 1
part in 1011; we shall have more to say about this in Chap. 8.

The Gravitational Force of a Sphere The law of gravitation applies
only to particles. How can we find the gravitational force on a
particle due to an extended body like the earth? Fortunately, the
gravitational force obeys the law of superposition: the force due
to a collection of particles is the vector sum of the forces exerted
by the particles individually. This allows us to mentally divide
the body into a collection of small elements which can be treated
as particles. Using integral calculus, we can sum the forces from
all the particles. This method is applied in Note 2.1 to calculate
the force between a particle of mass m and a uniform thin spher-
ical shell of mass M and radius R. The result is

F = 0

r > R

r < R,

where r is the distance from the center of the shell to the particle.
If the particle lies outside the shell, the force is the same as if all
the mass of the shell were concentrated at its center.

The reason the gravitational force vanishes inside the spherical
shell can be seen by a simple argument due to Newton. Consider
the two small mass elements marked out by a conical surface
with its apex at m. The amount of mass in each element is pro-
portional to its surface area. The area increases as (distance)2.
However, the strength of the force varies as l/(distance)2. Thus
the forces of the two mass elements are equal and opposite, and
cancel. The total force on m is zero, because we can pair up all
the elements of the shell this way.

A uniform solid sphere can be regarded as a succession of thin
spherical shells, and it follows that for particles outside it, a sphere
behaves gravitationally as if its mass were concentrated at its
center. This result also holds if the density of the sphere varies
with radius, provided the mass distribution is spherically sym-
metric. For example, although the earth has a dense core, the
mass distribution is nearly spherically symmetric, so that to good
approximation the gravitational force of the earth on a mass m at
distance r is

F = r > Re,

where Me is the mass of the earth and Re is its radius.
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At the surface of the earth, the gravitational force is

GMem .

and the acceleration due to gravity is

F
a = —

m

As we expect, the acceleration is independent of m. GMe/Re
2 is

usually called g. Sometimes g is written as a vector directed down,
toward the center of the earth.

Numerically, \g\ is approximately 9.8 m/s2 = 980cm/s2 « 32 ft/s2.
By convention, g usually stands for the downward acceleration

of an object measured with respect to the earth's surface. This
differs slightly from the true gravitational acceleration because of
the rotation of the earth, a point we shall return to in Chap. 8.
g increases by about five parts per thousand from the equator to
the poles. About half this variation is due to the slight flattening
of the earth about the poles, and the remainder arises from the
earth's rotation. Local mass concentrations also affect g\ a varia-
tion in g of ten parts per million is typical.

The acceleration due to gravity decreases with altitude. We
can estimate this effect by taking differentials of the expression

We have

dg A 2GMe
= - Ar = — Ar

dr r3

= Ar.
r

The fractional change in g with altitude is

Ag __ 2Ar

g r
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At the earth's surface, r = 6 X 106 mf and g decreases by one part
per million for an increase in altitude of 3 m.

Weight We define the weight of a body near the earth to be the
gravitational force exerted on it by the earth. At the surface of
the earth the weight of a mass m is

= mg.

The unit of weight is the newton (SI), dyne (cgs), or pound
(English). Since g = 9.8 m/s2, the weight of 1 kg mass is 9.8 N.
An automobile which weighs 3,200 Ib has mass

W 3,200 1b
m = 7 = = l 0 ° s l u g s "

Our definition of weight is unambiguous. According to our
definition, the weight of a body is not affected by its motion.
However, weight is often used in another sense. In this sense,
the magnitude of the weight is the magnitude of the force which
must be exerted on a body by its surroundings to keep it at rest-
its direction is the direction of gravitational attraction. The next
example illustrates the difference between these two definitions.

Example 2.9 Turtle in an Elevator

Ni

t k
w

An amiable turtle of mass M stands in an elevator accelerating at rate a
Find N, the force exerted on him by the floor of the elevator.

The forces acting on the turtle are N and the weight, the true gravita-
tional force W = Mg. Taking up to be the positive direction, we have

N -W = Ma
N = Mg + Ma

= M(g + a).

This result illustrates the two senses in which weight is used. In the
sense that weight is the gravitational force, the weight of the turtle, Mg,
is independent of the motion of the elevator. In contrast, the weight of
the turtle has magnitude N = M(g + «)» if the magnitude of the weight
is taken to be the magnitude of the force exerted by the elevator on the
turtle. If the turtle were standing on a scale, the scale would indicate a
weight N. With this definition, the turtle's weight increases when the
elevator accelerates up.

If the elevator accelerates down, a is negative and N is less than Mg.
If the downward acceleration equals g, N becomes zero, and the turtle
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"floats" in the elevator. The turtle is then said to be in a state of
weightlessness.

Although the two definitions of weight are both commonly used
and are both acceptable, we shall generally consider weight to
mean the true gravitational force. This is consistent with our
resolve to refer all motion to inertial systems and helps us to keep
the real forces on a body distinct. If thet acceleration due to
gravity is g, the real gravitational force on a body of mass m is
W = mg.

Our definition of weight has one minor drawback. As we saw
in the last example, a scale does not read mg in an accelerating
system. As we have already pointed out, systems at rest on the
earth's surface have a small acceleration due to the earth's rotation,
so that the reading of a scale is not the true gravitational force on
a mass. However, the effect is small, and we shall treat the sur-
face of the earth as an inertial system for the present.

The Gravitational Field The gravitational force on particle b due to
particle a is

GMaMb „

where ra& is a unit vector which points from a toward b. The ratio
F&/M&, which is independent of Mb, is called the gravitational field
due to Ma. Denoting the field by Go, we have

G - h

= ~ G - ; ' < * •

In general, if the gravitational field at a point in space is G, the
gravitational force on mass M at that point is

F = MG.

The dimension of gravitation field is force/mass = acceleration.
The acceleration of mass M by gravitational field G is given by

F =

=

or

a =

Ma

MG

G.
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We see that the gravitational field at a point is numerically equal
to the gravitational acceleration experienced by a body located
there. For example, the gravitational field of the earth is g.

For the present we can regard the gravitational field as a mathe-
matical convenience that allows us to focus on the source of the
gravitational attraction. However, the concept of field has a
broader significance in physics. Fields have important physical
properties, such as the ability to store or transmit energy and
momentum. Until recently, the dynamical properties of the
gravitational field were chiefly of theoretical interest, since their
effects were too small to be observed. However, there is now
lively experimental activity in searching for such dynamical fea-
tures as gravitational waves and "black holes."

The Electrostatic Force

We mention the electrostatic force only in passing since its full
implications are better left to a more detailed study of electricity
and magnetism. The salient feature of the electrostatic force
between two particles is that the force, like gravity, is an inverse
square central force. The force depends upon a fundamental
property of the particle called its electric charge q. There are two
different kinds of electric charge: like charges repel, unlike
charges attract.

For the sake of convenience, we distinguish the two different
kinds of charges by associating an algebraic sign with q, and for
this reason we talk about negative and positive charges. The
electrostatic force Fh on charge g& due to charge qa is given by
Coulomb's law:

qaqb p

r2

k is a constant of proportionality and rah is a unit vector which
points from a to 6. If qa and qb are both negative or both posi-
tive, the force is repulsive, but if the charges are of different sign,
F6 is attractive.

In the SI system, the unit of charge is the coulomb, abbreviated
C. (The coulomb is defined in terms of electric currents and
magnetic forces.) In this system, k is found by experiment to be

k = 8.99 X 109N-m2/C2.
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In analogy with the gravitational field, we can define the elec-
tric field E as the electric force on a body divided by its charge.
The electric field at r due to a charge q at the origin is

Contact Forces

By contact forces we mean the forces which are transmitted
between bodies by short-range atomic or molecular interactions.
Examples include the pull of a string, the surface force of sliding
friction, and the force of viscosity between a moving body and a
fluid. One of the achievements of twentieth century physics is
that these forces can now be explained in terms of the funda-
mental properties of matter. However, our approach will empha-
size the empirical properties of these forces and the techniques
for dealing with them in physical problems, with only brief men-
tion of their microscopic origins.

Tension—The Force of a String We have been taking the "string"
force for granted, having some primitive idea of this kind of force.
The following example is intended to help put these ideas into
sharper focus.

Example 2.10 Block and String 3

Consider a block of mass M in free space pulled by a string of mass m.
M ,.t,,,,,,,™,,,,,,,,„ * A force F is applied to the string, as shown. What is the force that the

I string "transmits" to the block?
a The sketch shows the force diagrams. Fi is the force of the string
. - p p, <*s on the block, F[ is the force of the block on the string, <ZM is the accel-

M i <*! v,/1,,i,/Ann fc> eration of the block, and as is the acceleration of the string. The equa-
tions of motion are

Fx = MaM

F — F[ = mas.

Assuming that the string is inextensible, it accelerates at the same rate
as the block, giving the constraint equation as = CIM- Furthermore,
Fi = F[ by Newton's third law. Solving for the acceleration, we find
that

F
M •+- m



A B

NEWTON'S LAWS—THE FOUNDATIONS OF NEWTONIAN MECHANICS

as we expect, and

F, = F[

M
F.

M + m

The force on the block is less than F; the string does not transmit the
full applied force. However, if the mass of the string is negligible com-
pared with the block, Fi = F to good approximation.

We can think of a string as composed of short sections inter-
acting by contact forces. Each section pulls the sections to either
side of it, and by Newton's third law, it is pulled by the adjacent
sections. The magnitude of the force acting between adjacent
sections is called tension. There is no direction associated with
tension. In the sketch, the tension at A is F and the tension at
B is F'.

Although a string may be under considerable tension (for exam-
ple a string on a guitar), if the tension is uniform, the net string
force on each small section is zero and the section remains at rest
unless external forces act on it. If there are external forces on
the section, or if the string is accelerating, the tension generally
varies along the string, as Examples 2.11 and 2.12 show.

Example 2.11 Dangling Rope

A uniform rope of mass M and length L hangs from the limb of a tree.
Find the tension a distance x from the bottom.

The force diagram for the lower section of the rope is shown in the
sketch. The section is pulled up by a force of magnitude T(x), where
T(x) is the tension at x. The downward force on the rope is its weight
W = Mg(x/L). The total force on the section is zero since it is at rest.
Hence

At the bottom of the rope the tension is zero, while at the top the tension
equals the total weight of the rope Mg.

The next example cannot be solved by direct application of
Newton's second law. However, by treating each small section
of the system as a particle, and taking the limit using calculus, we
can obtain a differential equation which leads to the solution.
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The technique is so useful that it is employed time and again in
physics.

Example 2.12 Whirling Rope

r + Ar

T(r) T(r + Ar)

A uniform rope of mass M and length L is pivoted at one end and whirls
with uniform angular velocity co. What is the tension in the rope at dis-
tance r from the pivot? Neglect gravity.

Consider the small section of rope between r and r + Ar. The length
of the section is Ar and its mass is Am = M Ar/L. Because of its cir-
cular motion, the section has a radial acceleration. Therefore, the forces
pulling either end of the section cannot be equal, and we conclude that
the tension must vary with r.

The inward force on the section is T(r), the tension at r, and the out-
ward force is T(r + Ar). Treating the section as a particle, its inward
radial acceleration is rco2. [This point can be confusing; it is just as rea-
sonable to take the acceleration to be (r + Ar)co2. However, we shall
shortly take the limit Ar —> 0, and in this limit the two expressions give
the same result.]

The equation of motion for the section is

T(r + Ar) - T(r) = -(Am)rco2

Mrco2 Ar

The problem is to find T(r), but we are not yet ready to do this. How-
ever, by dividing the last equation by Ar and taking the limit Ar —> 0, we
can find an exact expression for dT/dr.

dT T(r
— = lim
dr Ar->o

Afrco2

Ar) - T(r)

Ar

To find the tension, we integrate.

where To is the tension at r = 0.

T(r) - To = -
L 2

or

T(r) = To - ^ - r2.
2L
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To evaluate To we need one additional piece of information. Since
the end of the rope at r = L is free, the tension there must be zero.
We have

T(L) = 0 = To - iMw*L.

Hence, To = iMo)2L, and the final result can be written

T(r) =

When a pulley is used to change the direction of a rope under
tension, there is a reaction force on the pulley. As every sailor
knows, the force on the pulley depends on the tension and the
angle through which the rope is deflected. Working out this prob-
lem in detail provides another illustration of how calculus can be
applied to a physical problem.

Example 2.13 Pulleys

A string with constant tension T is deflected through angle 20O by a
smooth fixed pulley. What is the force on the pulley?

Intuitively, the magnitude of the force is IT sin 0O. To prove this
result, we shall find the force due to each element of the string and then
add them vectorially.

Consider the section of string between 0 and 0 + A0. The force dia-
gram is drawn below, center. AF is the outward force due to the pulley

AF AF A0/2

•Ad 12

I

The tension in the string is constant, but the forces T at either end of
the element are not parallel. Since we shall shortly take the limit A0 —> 0,
we can treat the element like a particle. For equilibrium, the total force
is zero. We have

Ad
AF -2Ts\n— = 0.

2

For small Ad, sin (A0/2) « A0/2 and

A0
AF = 2T— = TAB.

2
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Thus the element exerts an inward radial force of magnitude T Ad on the
pulley.

The element at angle 6 exerts a force in the x direction of (T Ad) cos 0.
The total force in the x direction is XT cos 6 A6, where the sum is over
all elements of the string which are touching the pulley. In the limit
AS —> 0, the sum becomes an integral. The total force in the x direction
is therefore

J - e 0
T cos Odd = 2Ts\n $0.

Tension and Atomic Forces The force on each element of a string
in equilibrium is zero. Nevertheless, the string will break if the
tension is too large. We can understand this qualitatively by
looking at strings from the atomic viewpoint. An idealized model
of a string is a single long chain of molecules. Suppose that force
F is applied to molecule 1 at the end of the string. The force
diagrams for molecules 1 and 2 are shown in the sketch below. In

F F'

equilibrium, F = Ff and F' = F", so that F" = F. We see that
the string "transmits" the force F. To understand how this
comes about, we need to look at the nature of intermolecular
forces.

Qualitatively, the force between two molecules depends on the
distance r between them, as shown in the drawing. The inter-
molecular force is repulsive at small distances, is zero at some
separation r0, and is attractive for r > r0. For large values of r
the force falls to zero. There are no scales on our sketch, but r0

is typically a few angstroms (1 A = 10~10 m).
When there is no applied force, the molecules must be a dis-

tance r0 apart; otherwise the intermolecular forces would make
the string contract or expand. As we pull on the string, the mole-
cules move apart slightly, say to r = r2, where the intermolecular
attractive force just balances the applied force so that the total
force on each molecule is zero. If the string were stiff like a
metal rod, we could push as well as pull. A push makes the
molecules move slightly together, say to r = rx, where the inter-
molecular repulsive force balances the applied force. The change
in the length depends on the slope of the interatomic force curve
at r0. The steeper the curve, the less the stretch for a given pull.

The attractive intermolecular force has a maximum value Fmax,
as shown in the sketch. If the applied pull is greater than Fmax,
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the intermolecular force is too weak to restore balance—the mole-
cules continue to separate and the string breaks.

For a real string or rod, the intermolecular forces act in a three
dimensional lattice work of atoms. The breaking strength of most
materials is considerably less than the limit set by Fma.*. Breaks
occur at points of weakness, or "defects," in the lattice, where
the molecular arrangement departs from regularity. Microscopic
metal "whiskers" seem to be nearly free from defects, and they
exhibit breaking strengths close to the theoretical maximum.

The Normal Force The force exerted by a surface on a body in
contact with it can be resolved into two components, one perpen-
dicular to the surface and one tangential to the surface. The
perpendicular component is called the normal force and the tan-
gential component is called friction.

The origin of the normal force is similar to the origin of tension
in a string. When we put a book on a table, the molecules of the
book exert downward forces on the molecules of the table. The
molecules composing the upper layers of the tabletop move down-
ward until the repulsion of the molecules below balances the force
applied by the book. From the atomic point of view, no surface
is perfectly rigid. Although compression always occurs, it is often
too slight to notice, and we shall neglect it and treat surfaces as
rigid.

The normal force on a body, generally denoted by N, has the
following simple property: for a body resting on a surface, N is
equal and opposite to the resultant of all other forces which act
on the body in a direction perpendicular to the surface. For
instance, when you stand still, the normal force exerted by the
ground is equal to your weight. However, when you walk, the
normal force fluctuates as you accelerate up and down.

Friction Friction cannot be described by a simple formula, but
macroscopic mechanics is hard to understand without some idea
of the properties of friction.

Friction arises when the surface of one body moves, or tries to
move, along the surface of a second body. The magnitude of the
force of friction varies in a complicated way with the nature of the
surfaces and their relative velocity. In fact, the only thing we
can always say about friction is that it opposes the motion which
would occur in its absence. For instance, suppose that we try
to push a book across a table. If we push gently, the book
remains at rest; the force of friction assumes a value equal and
opposite to the tangential force we apply. In this case, the force of
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friction assumes whatever value is needed to keep the book at rest.
However, the friction force cannot increase indefinitely. If we
push hard enough, the book starts to slide. For many surfaces
the maximum value of the friction is found to be equal to y,N,
where N is the normal force and /* is the coefficient of friction.

When a body slides across a surface, the friction force is directed
opposite to the instantaneous velocity and has magnitude nN.
Experimentally, the force of sliding friction decreases slightly when
bodies begin to slide, but for the most part we shall neglect this
effect. For two given surfaces the force of sliding friction is
essentially independent of the area of contact.

It may seem strange that friction is independent of the area of
contact. The reason is that the actual area of contact on an
atomic scale is a minute fraction of the total surface area. Fric-
tion occurs because of the interatomic forces at these minute
regions of atomic contact. The fraction of the geometric area in
atomic contact is proportional to the normal force divided by the
geometric area. If the normal force is doubled, the area of
atomic contact is doubled and the friction force is twice as large.
However, if the geometric area is doubled while the normal force
remains the same, the fraction of area in atomic contact is halved
and the actual area in atomic contact—hence the friction force—
remains constant. (Nonrigid bodies, like automobile tires, are
more complicated. A wide tire is generally better than a narrow
one for good acceleration and braking.)

In summary, we take the force of friction / t o behave as follows:

1. For bodies not in relative motion,

0 < / < nN.

f opposes the motion that would occur in its absence.

2. For bodies in relative motion,

f is directed opposite to the relative velocity.

Example 2.14
N

Block and Wedge with Friction

A block of mass m rests on a fixed wedge of angle 6. The coefficient of
friction is fx. (For wooden blocks, \x is of the order of 0.2 to 0.5.) Find
the value of 0 at which the block starts to slide.

In the absence of friction, the block would slide down the plane; hence
the friction force / points up the plane. With the coordinates shown, we
have

mx = W sin 6 — f
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and

my = N - W cos 0

= 0.

When sliding starts, / has its maximum value fxN, and x = 0. The
equations then give

W s in0 m a x = fiN

W cos 0max = N.

Hence,

tan 0max = n.

Notice that as the wedge angle is gradually increased from zero, the fric-
tion force grows in magnitude from zero toward its maximum value JJLN,
since before the block begins to slide we have

/ = W s i n 0 0 < 0max.

Example 2.15 The Spinning Terror

The Spinning Terror is an amusement park ride—a large vertical drum
which spins so fast that everyone inside stays pinned against the wall
when the floor drops away. What is the minimum steady angular velocity
co which allows the floor to be dropped away safely?

Suppose that the radius of the drum is R and the mass of the body is
M. Let /x be the coefficient of friction between the drum and M. The
forces on M are the weight W, the friction force /, and the normal force
exerted by the wall, iVf as shown below.

The radial acceleration is Ro)2 toward the axis, and the radial equation '
of motion is

By the law of static friction,

Since we require M to be in vertical equilibrium,

f=Mg,

and we have

Mg <

or

uli
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The smallest value of w that will work is

^min =

For cloth on wood /JL is at least 0.3, and if the drum has radius 6 ft, then
comin = [32/(0.3 X 6)]* = 4 rad/s. The drum must make at least CO/2TT =
0.6 turns per second.

Viscosity

A body moving through a liquid or gas is retarded by the force of
viscosity exerted on it by the fluid. Unlike the friction force
between dry surfaces, the viscous force has a simple velocity
dependence; it is proportional to the velocity. At high speeds
other forces due to turbulence occur and the total drag force can
have a complicated velocity dependence. (Sports car designers
use a force proportional to the square of the speed to account
for the drag forces.) However, in many practical cases viscosity
is the only important drag force.

Viscosity arises because a body moving through a medium
exerts forces which set the nearby fluid into motion. By New-
ton's third law the fluid exerts a reaction force on the body.

We can write the viscous retarding force in the form

F, = - C v ,

where C is a constant which depends on the fluid and the geom-
etry of the body. Fv is always along the line of motion, because it
is proportional to v. The negative sign assures that Fv opposes
the motion. For objects of simple shape moving through a gas
at low pressure, C can be calculated from first principles. We
shall treat it as an empirical constant.

When the only force on a body is the viscous retarding force,
the equation of motion is

dt

What we have here is a differential equation for v. Since the
force is along the line of motion, only the magnitude of v changes1

1 Formally, this is proved as follows. Since v = vv, dv/dt = dv/dt v + v dv/dt.
The equation of motion is — Cvv = m dv/dt v + mv dv/dt. Because v is a unit
vector, dv/dt is perpendicular to v. The other terms of the equation lie in the v
direction, so that dv/dt must be zero. The same conclusion follows more directly
from the simple physical argument that a force directed along the line of motion
can change the speed but cannot change the direction of motion.



96 NEWTON'S LAWS—THE FOUNDATIONS OF NEWTONIAN MECHANICS

and the vector equation reduces to the scalar equation

dv
— Cv = m —

dt

or

dt

The task of solving such a differential equation occurs often in
physics. A few differential equations are so simple and occur so
frequently that it is helpful to be thoroughly familiar with them
and their solutions. The equation of the form m dv/dt + Cv = 0
is one of the most common, and the following example should
make you feel at home with it.

Example 2.16 Free Motion in a Viscous Medium

A body of mass m released with velocity v0 in a viscous fluid is retarded
by a force Cv. Find the motion, supposing that no other forces act.

The equation of motion is

dv
m f- Cv = 0,

dt

which we can rewrite in the standard form

dt m

If you are familiar with the properties of the exponential function eax,
then you know that (d/dx)eax = aeax, or (d/dx)eax — aeax = 0. This sug-
gests that we use a trial solution v = eat, where a is a constant to be
determined. Then dv/dt = aeat, and substituting this in Eq. (1) gives us

Q
aeat ^ eat = 0.

m

This holds true at all times if a = —C/m. Hence, a solution is

However, this cannot be the correct solution; v has the dimension of
velocity whereas the exponential function is dimensionless. Let us try

v = Ae~ct/m,

where A is a constant. Substituting this in Eq. (1) gives

C C
Ae~ctfm -\ Ae~ctlm = 0,

m m
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0.37z;n

so that the solution is acceptable. But A can be any constant, whereas
our solution must be quite specific. To evaluate A we make use of the
given initial condition. An initial condition is a specific piece of informa-
tion about the motion at some particular t ime. We were given that
v = VQ at t = 0. Hence

V(t = 0) = Ae° V0.

Since e° = 1, it follows that A = v0, and the full solution is

v = voe~ctlm.

We solved Eq. (1) by what might be called a common sense approach—
we simply guessed the answer. This particular equation can also be
solved by formal integration after appropriate "separation of the
variables."

dv . C

1 v = o
dt mdv

v

C

m

v dv _ ft C

o v Jo m

I n - = - - t
Vn m

— = e(-C/m)t

dt Note the correspondence between the limits: v is the
velocity at time t and «o is the velocity at time 0.

v = Voe~ct/m.

Before leaving this problem, let us look at the solution in a little more
detail. The velocity decreases exponentially in time. If we let r = m/c,
then we have v = voe~t/T. r is a characteristic time for the system; it is
the time for the velocity to drop to e~l ~ 0.37 of its original velocity.

The Linear Restoring Force: Hooke's Law, the Spring,

and Simple Harmonic Motion

In the mid-seventeenth century Robert Hooke discovered that the
extension of a spring is proportional to the applied force, both for
positive and negative displacements. The force Fs exerted by a
stretched spring is given by Hooke's law

Fa = -kx,

where k is a constant called the spring constant and x is the dis-
placement of the end of the spring from its equilibrium position.
The magnitude of Fs increases linearly with displacement. The
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Spring force Applied force

A - x > 0

x<0

x<0 x>0

negative sign indicates that Fs is a restoring force; the spring
force is always in the direction that tends to restore the spring to
its equilibrium length. A force obeying Hooke's law is called a
linear restoring force.

If the spring is stretched by an applied force Fa, then x > 0 and
Fs is negative, directed toward the origin.

If the spring is compressed by Fa, then x < 0 and Fs is positive.
Hooke's law is essentially empirical and breaks down for large

displacements. Taking a jaundiced view of affairs, we could
rephrase Hooke's law as "extension is proportional to force, as
long as it is." However, this misses the important point. For
sufficiently small displacements Hooke's law is remarkably accu-
rate, not only for springs but also for practically every system near
equilibrium. Consequently, the motion of a system under a
linear restoring force occurs persistently throughout physics.

By looking at the intermolecular force curve on page 91, we can
see why the linear restoring force is so common. If the force
curve is linear in the neighborhood of the equilibrium point, then
the force is proportional to the displacement from equilibrium.
This is almost always the case; a sufficiently short segment of a
curve is generally linear to good approximation. Only in patho-
logical cases does the force curve have no linear component. It
is also apparent that the linear approximation necessarily breaks
down for large displacements. We shall return to these consider-
ations in Chap. 4.

In the following example we investigate simple harmonic motion
—the motion of a mass under a linear restoring force. We shall
again encounter a differential equation. Like the equation for
viscous drag, the differential equation for simple harmonic motion
occurs frequently and is well worth learning to recognize early in
the game. Fortunately, the solution has a simple form.

Example 2.17

M

Spring and Block—The Equation for Simple Harmonic Motion

A block of mass M is attached to one end of a horizontal spring, the other
end of which is fixed. The block rests on a horizontal f rictionless surface.
What motion is possible for the block?

Since the spring force is the only horizontal force acting on the block,
the equation of motion is

Mx = -kx

or
k

M'
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where x is measured from the equilibrium position.
write

It is convenient to

The equation takes the standard form

x + co2x = 0.

You should learn to recognize the mathematical form of this equation,
since it arises in many different physical contexts. It is called the equa-
tion of simple harmonic motion (SHM). Without going into the theory of
differential equations, we simply write down the solution

x = A sin cot + B cos cot.

oj is known as the angular frequency of the motion. By substitution it is
easy to show that this solution satisfies the original equation for arbitrary
values of A and B. The theory of differential equations tells us that
there are no further nontrivial solutions. The main point here, however,
is to become familiar with the mathematical form of the SHM differential
equation and the form of its solution. We shall derive the solution in
Example 4.2, but this purely mathematical process does not concern us
now.

As we show in the following example, the constants A and B
are to be determined from the initial conditions. We shall show
that A and B can be found by knowing the position and velocity
at some particular time.

Example 2.18 The Spring Gun—An Example Illustrating Initial Conditions

The piston of a spring gun has mass m and is attached to one end of a
spring with spring constant k. The projectile is a marble of mass M.
The piston and marble are pulled back a distance L from the equilibrium
position and suddenly released. What is the speed of the marble as it

^ loses contact with the piston? Neglect friction.
x Let the x axis be along the direction of motion with the origin at the

unstretched position. The position of the piston is given by

x(t) = A sin cot + B cos oot, 1

where a> = y/k/irn + M). This equation holds up to the time the
marble and piston lose contact. The velocity is

v(t) = x(t)

= coA cos cot — coB sin cot. 2
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There are two arbitrary constants in the solution, A and B, and to
evaluate them we need two pieces of information. We know that at
t = 0, when the spring is released, the position and velocity are given by

s(0) = -L

v(0) = 0.

Using these values in Eqs. (1) and (2), we find

- L = x(0)-

= A sin (0) + B cos (0)

= B,

and

0 = v(())

= coA cos (0) — coB sin (0)

Hence

B = -L

A = 0.

Then, from the time of release until the time when the marble leaves the
piston, the motion is described by the equations

x(t) = -L cos cot 3

v(t) = coL sin cot. 4

When do the marble and piston lose contact? The piston can only
push, not pull, on the marble, and when the piston begins to slow down,
contact is lost and the marble moves on at a constant velocity. From
Eq. (4), we see that the time tm at which the velocity reaches a maximum
is given by

Substituting this in Eq. (3), we find

x(tm) = - L c o s -

= 0.

The marble loses contact as the spring passes its equilibrium point, as
we expect, since the spring force retards the piston for x > 0.
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From Eq. (4), the final speed of the marble is

*W = v(tm)
T

= o)L sin —
2

L.
m + M

For the highest speeds, k and L should be large and m + M should be
small.

Note 2.1 The Gravitational Attraction of a Spherical Shell

In this note we calculate the gravitational force between a uniform thin
spherical shell of mass M and a particle of mass m located a distance r
from its center. We shall show that the magnitude of the force is
GMm/r2 if the particle is outside the shell and zero if the particle is
inside.

To attack the problem, we divide the shell into narrow rings and add
their forces by using integral calculus. Let R be the radius of the shell
and t its thickness, t <£R. The ring at angle 6, which subtends angle
dd, has circumference 2TR sin 0, width R dd, and thickness t. Its
volume is

dV = 2rRHs\n Odd

and its mass is

pdV = 2wRHp sin Odd

M
= —sin Odd,

where p = M/(fiirRH) is the density of the shell.
Each part of the ring is the same distance r' from m. The force on

m due to a small section of the ring points toward that section. By
symmetry, the transverse force components for the whole ring add vec-
torially to zero. Since the angle a between the force vector and the line
of centers is the same for all sections of the ring, the force components
along the line of centers add to give

__ GmpdV
dF = cos a

for the whole ring.
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The force due to the entire shell is

= f dF

r GmpdV

J i - cos a.

The problem now is to express all the quantities in the integrand in

terms of one variable, say the polar angle 0. From the sketch, cos a =

(r - R cos 0)/r\ and r' = Vr2 + R2 - IrR cos 0. Since

p d 7 = if sin ddd/2,

we have

(r - #cos 0)sin 0 dd(
\ 2 (r2 + R2 - cos

A convenient substitution for evaluating this integral is u
du = R sin 6 d$. Hence

r - R cos 6,

= /GAfm'!)£
udu

(# 2 - r2 + 2nz)f

This integral is listed in standard tables. The result is

F _ GMm 1
1R lr2

__ GMm

" 4#r2

- r2 + 2™ -
r2 - # 2

\/R2 - r2 + Iru

r+ft

r-R

r> R.

For r > R, the shell acts gravitationally as though all its mass were con-
centrated at its center.

There is one subtlety in our evaluation of the integral. The term

V r 2 + R2 — 2rR is inherently positive, and we must take

Vr2 + R2 - 2rR = r - R,

since r > R. If the particle is inside the shell, the magnitude of the

force is still given by Eq. (1). However, in this case r < R, and we must

R — r in the evaluation. We findtake Vr2 + R2 - IrR

_ GMm
ARr2

= 0 r < R.

A solid sphere can be thought of as a succession of spherical shells.
It is not hard to extend our results to this case when the density of the
sphere p(r') is a function only of radial distance r' from the center of
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the sphere. The mass of a spherical shell of radius rf and thickness
dr' is p(r')47rr'2 dr'. The force it exerts on m is

m dF = — p(r')4xr/2 dr'.
• r2

Since the force exerted by every shell is directed toward the center of the
sphere, the total force is

Gm<fj **>»*»*>.
However, the integral is simply the total mass of the sphere, and we find
that for r > R, the force between m and the sphere is identical to the
force between two particles separated a distance r.

~

V////////////////^^^^

Problems 2.1 A 5-kg mass moves under the influence of a force F = (4£2i — 3tj) N,
where t is the time in seconds (1 N = 1 newton). It starts at rest from the
origin at t = 0. Find: (a) its velocity; (b) its position; and (c) r X v,
for any later time.

Ans. clue, (c) If t = 1 s, r X v = 6.7 X 10"3k m2/s

2.2 The two blocks shown in the sketch are connected by a string of
negligible mass. If the system is released from rest, find how far block
Mi slides in time t. Neglect friction.

Ans. clue. If Mx = M2, x = gt2/4

2.3 Two blocks are in contact on a horizontal table. A horizontal force
is applied to one of the blocks, as shown in the drawing. If mi = 2 kg,
m2 = 1 kg, and F = 3 N, find the force of contact between the two blocks.

2.4 Two particles of mass m and M undergo uniform circular motion
about each other at a separation R under the influence of an attractive
force F. The angular velocity is o> radians per second. Show that
ft = (F/o)2)(l/m + 1/M).

2.5 The Atwood's machine shown in the drawing has a pulley of negligible
mass. Find the tension in the rope and the acceleration of M.

Ans. clue. If M = 2m, T = $Mg, A = ig

2.6 In a concrete mixer, cement, gravel, and water are mixed by tumbling
action in a slowly rotating drum. If the drum spins too fast the ingre-
dients stick to the drum wall instead of mixing.

Assume that the drum of a mixer has radius R and that it is mounted
with its axle horizontal. What is the fastest the drum can rotate without
the ingredients sticking to the wall all the time? Assume g = 32 ft/s2.

Ans. clue. If R = 2 ft, o w = 4 rad/s ~ 38 rotations per minute
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4 kg

5 kg

y//////////////////////^^^^^

2.7 A block of mass Mi rests on a block of mass M2 which lies on a
frictionless table. The coefficient of friction between the blocks is /*.
What is the maximum horizontal force which can be applied to the blocks
for them to accelerate without slipping on one another if the force is
applied to (a) block 1 and (b) block 2?

2.8 A 4-kg block rests on top of a 5-kg block, which rests on a frictionless
table. The coefficient of friction between the two blocks is such that the
blocks start to slip when the horizontal force F applied to the lower block
is 27 N. Suppose that a horizontal force is now applied only to the upper
block. What is its maximum value for the blocks to slide without slipping
relative to each other?

Ans. F = 21.6 N

2.9 A particle of mass m slides without friction on the inside of a cone.
The axis of the cone is vertical, and gravity is directed downward. The
apex half-angle of the cone is 6, as shown.

The path of the particle happens to be a circle in a horizontal plane.
The speed of the particle is v0.

Draw a force diagram and find the radius of the circular path in terms
of v0, g, and 6.

2.10 Find the radius of the orbit of a synchronous satellite which circles
the earth. (A synchronous satellite goes around the earth once every
24 h, so that its position appears stationary with respect to a ground sta-
tion.) The simplest way to find the answer and give your results is by
expressing all distances in terms of the earth's radius.

Ans. 6.6Re

2.11 A mass m is connected to a vertical revolving axle by two strings of
length I, each making an angle of 45° with the axle, as shown. Both the
axle and mass are revolving with angular velocity co. Gravity is directed
downward.

a. Draw a clear force diagram for m.

Ans. clue. If Zo>2

and lower string, Tloyf.

= V 2 g, Tup = V 2 mg

2.12 If you have courage and a tight grip, you can yank a tablecloth out
from under the dishes on a table. What is the longest time in which
the cloth can be pulled out so that a glass 6 in from the edge comes to
rest before falling off the table? Assume that the coefficient of friction
of the glass sliding on the tablecloth or sliding on the tabletop is 0.5.
(For the trick to be effective the cloth should be pulled out so rapidly
that the glass does not move appreciably.)

2.13 Masses Mx and M2 are connected to a system of strings and pulleys
as shown. The strings are massless and inextensible, and the pulleys
are massless and frictionless. Find the acceleration of Mi.

Ans. clue. If Mi = M2, x\ = #/5
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2.14 Two masses, A and B, lie on a frictionless table (see below left).
They are attached to either end of a light rope of length I which passes
around a pulley of negligible mass. The pulley is attached to a rope
connected to a hanging mass, C Find the acceleration of each mass.
(You can check whether or not your answer is reasonable by considering
special cases—for instance, the cases MA = 0, or MA = MB = Mc.)

WzztzZ^zz^^

2.15 The system on the right above uses massless pulleys and rope.
The coefficient of friction between the masses and horizontal surfaces
is/x. Assume that Mi and M2 are sliding. Gravity is directed downward

a. Draw force diagrams, and show all relevant coordinates.

b. How are the accelerations related?

c. Find the tension in the rope, T.

Ans. T = 0* + lfo/P/M, + l/(2i¥0 + 1/(2M2)]
2.16 A 45° wedge is pushed along a table with constant acceleration A.
A block of mass m slides without friction on the wedge. Find its acceler-
ation. (Gravity is directed down.)

Ans. clue. If A = 3g, y = g

2.17 A block rests on a wedge inclined at angle 0. The coefficient of
friction between the block and plane is ju.

a. Find the maximum value of 6 for the block to remain motionless on
the wedge when the wedge is fixed in position.

Ans. tan 6 = n

b. The wedge is given horizontal acceleration a, as shown. Assuming
that tan 6 > fx, find the minimum acceleration for the block to remain
on the wedge without sliding.

Ans. clue. If 6 = TT/4, amin = g(l - M)/(1 + /0

c. Repeat part b, but find the maximum value of the acceleration.
Ans. clue. If 6 = TT/4, amax = g{\ +
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2.18 A painter of mass M stands on a platform of mass m and pulls
himself up by two ropes which hang over pulleys, as shown. He pulls
each rope with force F and accelerates upward with a uniform accelera-
tion a. Find a—neglecting the fact that no one could do this for long.

Ans. clue. If M = m and F = Mg, a = g

y/////////////////^^^^^^

2.19 A "Pedagogical Machine" is illustrated in the sketch above. Al
surfaces are frictionless. What force F must be applied to Mx to keep
Mz from rising or falling?

Ans. clue. For equal masses, F = 3Mg

2.20 Consider the "Pedagogical Machine" of the last problem in the
case where F is zero. Find the acceleration of Mx.

Ans. ai = -MMzgliMMi + MXMZ + 2M2M3 + M3
2)

2.21 A uniform rope of mass m and length I is attached to a block of
mass M. The rope is pulled with force F. Find the tension at distance
x from the end of the rope. Neglect gravity.

2.22 A uniform rope of weight W hangs between two trees. The ends
of the rope are the same height, and they each make angle 6 with the
trees. Find

a. The tension at either end of the rope

b. The tension in the middle of the rope

Ans. clue. If 6 = 45°, Tend = W/y/l, Tmiddle = IF/2

2.23 A piece of string of length I and mass M is fastened into a circular
loop and set spinning about the center of a circle with uniform angular
velocity co. Find the tension in the string. Suggestion: Draw a force
diagram for a small piece of the loop subtending a small angle, AS.

Ans. T = Mo)H/(2wy

2.24 A device called a capstan is used aboard ships in order to control
a rope which is under great tension. The rope is wrapped around a
fixed drum, usually for several turns (the drawing shows about three-
fourths turn). The load on the rope pulls it with a force TA, and the
sailor holds it with a much smaller force TB. Can you show that TB =
TAe~»e, where /* is the coefficient of friction and 6 is the total angle sub-
tended by the rope on the drum?
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2.25 Find the shortest possible period of revolution of two identical grav-
itating solid spheres which are in circular orbit in free space about a
point midway between them. (You can imagine the spheres fabricated
from any material obtainable by man.)

2.26 The gravitational force on a body located at distance R from the
center of a uniform spherical mass is due solely to the mass lying at
distance r < R, measured from the center of the sphere. This mass
exerts a force as if it were a point mass at the origin.

Use the above result to show that if you drill a hole through the earth
and then fall in, you will execute simple harmonic motion about the
earth's center. Find the time it takes you to return to your point of
departure and show that this is the time needed for a satellite to circle
the earth in a low orbit with r « Re. In deriving this result, you need
to treat the earth as a uniformly dense sphere, and you must neglect all
friction and any effects due to the earth's rotation.

2.27 As a variation of the last problem, show that you will also execute
simple harmonic motion with the same period even if the straight hole
passes far from the earth's center.

2.28 An automobile enters a turn whose radius is R. The road is banked
m at angle 6, and the coefficient of friction between wheels and road is fx.

Find the maximum and minimum speeds for the car to stay on the road
without skidding sideways.

Ans. clue. If /x = 1 and 6 = TT/4, all speeds are possible

2.29 A car is driven on a large revolving platform which rotates with con-
stant angular speed co. At t = 0 a driver leaves the origin and follows
a line painted radially outward on the platform with constant speed v0.
The total weight of the car is W, and the coefficient of friction between
the car and stage is fx.

a. Find the acceleration of the car as a function of time using polar
coordinates. Draw a clear vector diagram showing the components of
acceleration at some time t > 0.

b. Find the time at which the car just starts to skid.

c. Find the direction of the friction force with respect to the instan-
taneous position vector r just before the car starts to skid. Show your
result on a clear diagram.

2.30 A disk rotates with constant angular velocity co, as shown. Two
masses, VIA and TYIB, slide without friction in a groove passing through
the center of the disk. They are connected by a light string of length I,
and are initially held in position by a catch, with mass VIA at distance TA
from the center. Neglect gravity. At t = 0 the catch is removed and
the masses are free to slide.

Find rA immediately after the catch is removed in terms of m,At MB, I,
TA, and co.
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2.31 Find the frequency of oscillation of mass m suspended by two
springs having constants kx and k2, in each of the configurations shown.

Ans. clue. If ki = k2 = k, coa = \/k/2m, cob = y/lk/m

2.32 A wheel of radius # rolls along the ground with velocity V. A
pebble is carefully released on top of the wheel so that it is instanta-
neously at rest on the wheel.

a. Show that the pebble will immediately fly off the wheel if V >

b. Show that in the case where V < y/Rg, and the coefficient of

friction is /x = l f the pebble starts to slide when it has rotated through

an angle given by 0 = arccos [(l/V2)(V2/Rg)] - w/4.

2.33 A particle of mass m is free to slide on a thin rod. The rod rotates
in a plane about one end at constant angular velocity co. Show that the
motion is given by r = Ae~yt + Be+yt, where 7 is a constant which you
must find and A and B are arbitrary constants. Neglect gravity.

Show that for a particular choice of initial conditions [that is, r(t = 0)
and v(t = 0)]r it is possible to obtain a solution such that r decreases
continually in time, but that for any other choice r will eventually increase.
(Exclude cases where the bead hits the origin.)

2.34. A mass m whirls around on a string which passes through a ring,
as shown. Neglect gravity. Initially the mass is distance r0 from the
center and is revolving at angular velocity co0. The string is pulled with
constant velocity V starting at t = 0 so that the radial distance to the
mass decreases. Draw a force diagram and obtain a differential equa-
tion for co. This equation is quite simple and can be solved either by
inspection or by formal integration. Find

a. w(O-
Ans. clue. For Vt = ro/2, co = 4co0

b. The force needed to pull the string.

2.35 This problem involves solving a simple differential equation.
A block of mass m slides on a frictionless table. It is constrained to

move inside a ring of radius I which is fixed to the table. At t = 0, the
block is moving along the inside of the ring (i.e., in the tangential direction)
with velocity v0. The coefficient of friction between the block and the
ring is fx.

a. Find the velocity of the block at later times.

Ans. !;0/[l +

b. Find the position of the block at later times.

2.36 This problem involves a simple differential equation. You should
be able to integrate it after a little "playing around."

A particle of mass m moving along a straight line is acted on by a
retarding force (one always directed against the motion) F = beav, where
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b and a are constants and v is the velocity. At t = 0 it is moving with
velocity VQ. Find the velocity at later times.

Ans. v(t) = (I/a) In [l/(abt/m + <Tav°)l

2.37 The Eureka Hovercraft Corporation wanted to hold hovercraft races
as an advertising stunt. The hovercraft supports itself by blowing air
downward, and has a big fixed propeller on the top deck for forward
propulsion. Unfortunately, it has no steering equipment, so that the
pilots found that making high speed turnswas very difficult. Thecompany
decided to overcome this problem by designing a bowl shaped track in
which the hovercraft, once up to speed, would coast along in a circular
path with no need to steer. They hired an engineer to design and build
the track, and when he finished, he hastily left the country. When the
company held their first race, they found to their dismay that the craft
took exactly the same time T to circle the track, no matter what its speed.
Find the equation for the cross section of the bowl in terms of T.
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3.1 Introduction

In the last chapter we made a gross simplification by treating
nature as if it were composed of point particles rather than real,
extended bodies. Sometimes this simplification is justified—as in
the study of planetary motion, where the size of the planets is of
little consequence compared with the vast distances which char-
acterize our solar system, or in the case of elementary particles
moving through an accelerator, where the size of the particles,
about 10~15 m, is minute compared with the size of the machine.
However, these cases are unusual. Much of the time we deal
with large bodies which may have elaborate structure. For
instance, consider the landing of a spacecraft on the moon.
Even if we could calculate the gravitational field of such an irreg-
ular and inhomogeneous body as the moon, the spacecraft itself
is certainly not a point particle—it has spiderlike legs, gawky
antennas, and a lumpy body.

Furthermore, the methods of the last chapter fail us when we
try to analyze systems such as rockets in which there is a flow of
mass. Rockets accelerate forward by ejecting mass backward; it
is hard to see how to apply F = Ma to such a system.

In this chapter we shall generalize the laws of motion to over-
come these difficulties. We begin by restating Newton's second
law in a slightly modified form. In Chap. 2 we wrote the law in
the familiar form

F = Ma. 3.1

This is not quite the way Newton wrote it. He chose to write

F = ^ My. 3.2
dt

For a particle in newtonian mechanics, M is a constant and
(d/dt)(Mv) = M(dv/dt) = Ma, as before. The quantity My,
which plays a prominent role in mechanics, is called momentum.
Momentum is the product of a vector v and a scalar M. Denoting
momentum by p, Newton's second law becomes

F - * 3.3
dt

This form is preferable to F = Ma because it is readily generalized
to complex systems, as we shall soon see, and because momentum
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turns out to be more fundamental than mass or velocity
separately.

3.2 Dynamics of a System of Particles

Consider a system of interacting particles. One example of such
a system is the sun and planets, which are so far apart compared
with their diameters that they can be treated as simple particles
to good approximation. All particles in the solar system interact
via gravitational attraction; the chief interaction is with the sun,
although the interaction of the planets with each other also influ-
ences their motion. In addition, the entire solar system is
attracted by far off matter.

At the other extreme, the system could be a billiard ball resting
on a table. Here the particles are atoms (disregarding for now
the fact that atoms are not point particles but are themselves
composed of smaller particles) and the interactions are primarily
interatomic electric forces. The external forces on the billiard
ball include the gravitational force of the earth and the contact
force of the tabletop.

We shall now prove some simple properties of physical systems.
We are free to choose the boundaries of the system as we please,
but once the choice is made, we must be consistent about which
particles are included in the system and which are not. We
suppose that the particles in the system interact with particles
outside the system as well as with each other. To make the argu-
ment general, consider a system of N interacting particles with
masses mi, m2, m3, . . . , mN. The position of the j th particle
is Tj, the force on it is fy, and its momentum is p, = m^j. The
equation of motion for the jth particle is

f' = f • 3-4
at

The force on particle j can be split into two terms:
f; = f/nt + f .ext< 3.5
Here f/nt, the internal force on particle j, is the force due to all
other particles in the system, and f/xt, the external force on par-
ticle j, is the force due to sources outside the system. The equa-
tion of motion becomes

fyint _)_ fyext = ?9i. 3.6
dt
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Now let us focus on the system as a whole by the following
stratagem: add all the equations of motion of all the particles in
the system.

at

at

is* + v- = ̂ r
at

The result of adding these equations can be written

2f/nt + 2f/xt = £ ~ 3.8

The summations extend over all particles, j = 1, . . . , N.
The second term, 2f/x t , is the sum of all external forces acting

on all the particles. It is the total external force acting on the
system, Fext.

The first term in Eq. (3.8), Sf/nt, is the sum of all internal forces
acting on all the particles. According to Newton's third law, the
forces between any two particles are equal and opposite so that
their sum is zero. It follows that the sum of all the forces between
all the particles is also zero; the internal forces cancel in pairs.
Hence

Sf/nt = 0.

Equation (3.8) then simplifies to

F - V ^ 3 9

The right hand side can be written 2(dpj/dt) = (d/dt)2pjt since
the derivative of a sum is the sum of the derivatives. 2p, is the
total momentum of the system, which we designate by P.

P s 2py. 3.10



SEC. 3.2 DYNAMICS OF A SYSTEM OF PARTICLES 115

With this substitution, Eq. (3.9) becomes

Fext = ~ 3.11
at

In words, the total external force applied to a system equals
the rate of change of the system's momentum. This is true irre-
spective of the details of the interaction; Fext could be a single
force acting on a single particle, or it could be the resultant of
many tiny interactions involving each particle of the system.

Example 3.1 The Bola

The bola is a weapon used by gauchos for entangling animals. It con-
sists of three balls of stone or iron connected by thongs. The gaucho
whirls the bola in the air and hurls it at the animal. What can we say
about its motion?

Consider a bola with masses m,u m^ and m^. The balls are pulled by
the binding thong and by gravity. (We neglect air resistance.) Since
the constraining forces depend on the instantaneous positions of all
three balls, it is a real problem even to write the equation of motion of
one ball. However, the total momentum obeys the simple equation

dP
— = ^ x t = f lGXt + f2CXt + f 3eXt

at

= niig + m2g + m3g

or

dP

where M is the total mass. This equation represents an important first
step in finding the detailed motion. The equation is identical to that
of a single particle of mass M with momentum P. This is a familiar fact
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to the gaucho who forgets that he has a complicated system when he
hurls the bola; he instinctively aims it like a single mass.

Center of Mass

According to Eq. (3.11),

F = * 3.12
dt

where we have dropped the subscript ext with the understanding
that F stands for the external force. This result is identical to
the equation of motion of a single particle, although in fact it
refers to a system of particles. It is tempting to push the analogy
between Eq. (3.12) and single particle motion even further by
writing

F = MR, 3.13

where M is the total mass of the system and R is a vector yet to
be defined. Since P = Zm,!,-, Eq. (3.12) and (3.13) give

d?
MR = -— = Vmfa,

dt

which is true if

R = — Smyry. 3.14
M

R is a vector from the origin to the point called the center of
mass. The system behaves as if all the mass is concentrated at
the center of mass and all the external forces act at that point.

We are often interested in the motion of comparatively rigid
bodies like baseballs or automobiles. Such a body is merely a
system of particles which are fixed relative to each other by strong
internal forces; Eq. (3.13) shows that with respect to external
forces, the body behaves as if it were a point particle. In Chap.
2, we casually treated every body as if it were a particle; we see
now that this is justified provided that we focus attention on the
center of mass.

You may wonder whether this description of center of mass
motion isn't a gross oversimplification—experience tells us that
an extended body like a plank behaves differently from a compact
body like a rock, even if the masses are the same and we apply



SEC. 3.2 DYNAMICS OF A SYSTEM OF PARTICLES 117

the same force. We are indeed oversimplifying. The relation
F = Mf i describes only the translation of the body (the motion
of its center of mass); it does not describe the body's orientation
in space. In Chaps. 6 and 7 we shall investigate the rotation of
extended bodies, and it will turn out that the rotational motion
of a body depends both on its shape and the point where the
forces are applied. Nevertheless, as far as translation of the
center of mass is concerned, F = MR tells the whole story.
This result is true for any system of particles, not just for those
fixed in rigid objects, as long as the forces between the particles
obey Newton's third law. It is immaterial whether or not the
particles move relative to each other and whether or not there
happens to be any matter at the center of mass.

Example 3.2 Drum Major's Baton

A drum major's baton consists of two masses ni\ and m2 separated by a
thin rod of length I. The baton is thrown into the air. The problem is
to find the baton's center of mass and the equation of motion for the
center of mass.

Let the position vectors of nil and m2 be ri and r2. The position vector
of the center of mass, measured from the same origin, is

R = m2r2

+ m2

where we have neglected the mass of the thin rod. The center of mass
lies on the line joining nil and m2. To show this, suppose first that the
tip of R does not lie on the line, and consider the vectors r[, r'2 from the
tip of R to ni) and m2. From the sketch we see that

r i = r! - R

r'2 = r2 — R.

Using Eq. (1) gives

= r, -
m2r2

nil + ni2

i n
r2 = r2 -

+ m2 nil

(r, - r2)

m2r2

nil + ni2 nil + ni2
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r i and r'2 are proportional to r} — r2, the vector from mi to m2. Hence
r[ and r2 lie along the line joining mx and m2, as shown. Furthermore,

r[ = ^— |ri - r2|
mi -\- m2

- m2 1
mi + m2

and
, mi

mj + m2

•I.
mi + m2

Assuming that friction is negligible, the external force on the baton is

F = wiig + w2g.

The equation of motion of the center of mass is

(mi + m2)R = (mi + m2)g

or

R = g.

The center of mass follows the parabolic trajectory of a single mass in a
uniform gravitational field. With the methods developed in Chap. 6, we
shall be able to find the motion of mi and m2 about the center of mass,
completing the solution to the problem.

Although it is a simple matter to find the center of mass of a
system of particles, the procedure for locating the center of mass
of an extended body is not so apparent. However, it is a straight-
forward task with the help of calculus. We proceed by dividing
the body into N mass elements. If ry is the position of the jth
element, and ray is its mass, then

N

R = M.4myry-
The result is not rigorous, since the mass elements are not true
particles. However, in the limit where N approaches infinity, the
size of each element approaches zero and the approximation
becomes exact.

i
R = lim —:

This limiting process defines an integral. Formally
oo

lim V myry = / r dm,
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where dm is a differential mass element. Then

3.15

To visualize this integral, think of dm as the mass in an element
of volume dV located at position r. If the mass density at the
element is p, then dm = pdV and

-hl"dV-M

This integral is called a volume integral. Although it is important
to know how to find the center of mass of rigid bodies, we shall
only be concerned with a few simple cases here, as illustrated by
the following two examples. Further examples are given in Note
3.1 at the end of the chapter.

Example 3.3 Center of Mass of a Nonuniform Rod

A rod of length L has a nonuniform density. X, the mass per unit length
of the rod, varies as X = X0(s/L), where Xo is a constant and s is the dis-
tance from the end marked 0. Find the center of mass.

It is apparent that R lies on the rod. Let the origin of the coordinate
system coincide with the end of the rod, 0, and let the x axis lie along the
rod so that s = x. The mass in an element of length dx is dm = X dx =
\oxdx/L. The rod extends from x = 0 to x = L and the total mass is

M dm-i
= fL\dxjo
_ r L \ox dx
~ Jo L

The center of mass is at

R = — f r\dM

1

\0L
L

0
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Example 3.4 Center of Mass of a Triangular Sheet

Consider the two dimensional case of a uniform right triangular sheet of
mass M, base b, height h, and small thickness t. If we divide the sheet
into small rectangular areas of side Ax and Ay, as shown, then the volume
of each element is AV = t Ax Ay, and

M

where j is the label of one of the volume elements and py is the density.
Because the sheet is uniform,

M M
= constant = — = —>

V At

where A is the area of the sheet.
We can carry out the sum by summing first over the Ax's and then

over the Ay's, instead of over the single index j. This gives a double
sum which can be converted to a double integral by taking the limit, as
follows:

lim z 9 G 0 2 s r ' A ^
= i / / r < ^ -

Let r = x\ + y\ be the position vector of an element dxdy.
writing R = XI + Y], we have

R = x\ + Y)

Then,

= j (II x dx dyy + j(ff V dx dy)l

Hence the coordinates of the center of mass are given by

X = — / / xdxdy

Y = — / / y dxdy.
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The double integrals may look strange, but they are easily evaluated.
Consider first the double integral

x = T / / x dx dy-

This integral instructs us to take each element, multiply its area by its
x coordinate, and sum the results. We can do this in stages by first
considering the elements in a strip parallel to the y axis. The strip runs
from y = 0 to y = xh/b. Each element in the strip has the same x
coordinate, and the contribution of the strip to the double integral is

— x dx I
A Jo

xh/b h
dy = — x2 dx.

bA

Finally, we sum the contributions of all such strips x = 0 to x = b to find

bA Jo
x2 dx =

bA 3
Kb2

Since A = ibh,

Similarly,

1 fb / fxh/b \
= JJo (/O ydy)dx

h2 fb h2b
= / x2 dx = —

2Ab2 Jo 6A

Hence

R = +
Although the coordinates of R depend on the particular coordinate sys-
tem we choose, the position of the center of mass with respect to the
triangular plate is, of course, independent of the coordinate system.

Often physical arguments are more useful than mathematical

analysis. For instance, to find the center of mass of an irregular

plane object, let it hang from a pivot and draw a plumb line from

the pivot. The center of mass will hang directly below the pivot

(this may be intuitively be obvious, and it can easily be proved
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with the methods of Chap. 6), and it is somewhere on the plumb
line. Repeat the procedure with a different pivot point. The
two lines intersect at the center of mass.

Example 3.5 Center of Mass Motion

A rectangular box is held with one corner resting on a frictionless table
and is gently released. It falls in a complex tumbling motion, which we
are not yet prepared to solve because it involves rotation. However,
there is no difficulty in finding the trajectory of the center of mass.

y///////////////^^^^^

The external forces acting on the box are gravity and the normal force
of the table. Neither of these has a horizontal component, and so the
center of mass must accelerate vertically. For a uniform box, the center
of mass is at the geometrical center. If the box is released from rest,
then its center falls straight down.

3.3 Conservation of Momentum

In the last section we found that the total external force F acting
on a system is related to the total momentum P of the system by

F

Consider the implications of this for an isolated system, that is, a
system which does not interact with its surroundings. In this
case F = 0, and dP/dt = 0. The total momentum is constant;
no matter how strong the interactions among an isolated system
of particles, and no matter how complicated the motions, the total
momentum of an isolated system is constant. This is the law of
conservation of momentum. As we shall show, this apparently
simple law can provide powerful insights into complicated systems.
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Example 3.6 Spring Gun Recoil

A loaded spring gun, initially at rest on a horizontal frictionless surface,
fires a marble at angle of elevation 6. The mass of the gun is M, the
mass of the marble is m, and the muzzle velocity of the marble is v0.
What is the final motion of the gun?

Take the physical system to be the gun and marble. Gravity and the
normal force of the table act on the system. Both these forces are ver-
tical. Since there are no horizontal external forces, the z component
of the vector equation F = dP/dt is

dPx

sin 0

According to Eq. (1), Px is conserved:

*x, initial = -* x, final* 2

Let the initial time be prior to firing the gun. Then P*,initiai = 0, since
the system is initially at rest. After the marble has left the muzzle, the
gun recoils with some speed Vf, and its final horizontal momentum
is MVft to the left. Finding the final velocity of the marble involves a
subtle point, however. Physically, the marble's acceleration is due to
the force of the gun, and the gun's recoil is due to the reaction force of
the marble. The gun stops accelerating once the marble leaves the
barrel, so that at the instant the marble and the gun part company, the
gun has its final speed Vf. At that same instant the speed of the mar-
ble relative to the gun is v0. Hence, the final horizontal speed of the
marble relative to the table is v0 cos 6 — Vf. By conservation of hori-
zontal momentum, we therefore have

0 = m(v0 cos 6 - V/) - MVf

or
mv0 cos 0

M + m

By using conservation of momentum we found the final motion of the
system in a few steps. To show the advantage of this method, let us
repeat the problem using Newton's laws directly.

Let v(O be the velocity of marble at time t and let V(O be the velocity
of the gun. While the marble is being fired, it is acted on by the spring,
by gravity, and by friction forces with the muzzle wall. Let the net
force on the marble be f(t). The x equation of motion for the marble is

* dt
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Formal integration of Eq. (3) gives

mvx(t) = mvx(0)

The external forces are all vertical, and therefore the horizontal force fx

on the marble is due entirely to the gun. By Newton's third law, there is
a reaction force — fx on the gun due to the marble. No other horizontal
forces act on the gun, and the horizontal equation of motion for the gun
is therefore

at

which can be integrated to give

MVx(t) = MVX(O)-

We can eliminate the integral by combining Eqs. (4) and (5):

MVx(t) + mvx(t) = M VX(Q) + mvx(0). 6

We have rediscovered that the horizontal component of momentum is
conserved.

What about the motion of the center of mass? Its horizontal velocity
is

Rx(t) = ——
M + m

Using Eq. (6), the numerator can be rewritten to give

. MVX(O) + mvx(Q)
Kx{t) = —— = U,

M + m

since the system is initially at rest. Rx is constant, as we expect.
We did not include the small force of air friction. Would the center of

mass remain at rest if we had included it?

The essential step in our derivation of the law of conservation of

momentum was to use Newton's third law. Thus, conservation of

momentum appears to be a natural consequence of newtonian

mechanics. It has been found, however, that conservation of

momentum holds true even in areas where newtonian mechanics

proves inadequate, including the realms of quantum mechanics

and relativity. In addition, conservation of momentum can be
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generalized to apply to systems like the electromagnetic field,
which possess momentum but not mass. For these reasons,
conservation of momentum is generally regarded as being more
fundamental than newtonian mechanics. From this point of view,
Newton's third law is a simple consequence of conservation of
momentum for interacting particles. For our present purposes
it is purely a matter of taste whether we wish to regard Newton's
third law or conservation of momentum as more fundamental.

Example 3.7 Earth, Moon, and Sun—a Three Body System

Newton was the first to calculate the motion of two gravitating bodies.
As we shall discuss in Chap. 9, two bodies of mass M\ and M2 bound by
gravity move so that ri2 traces out an ellipse. The sketch shows the
motion in a frame in which the center of mass is at rest. (Note that the
center of mass of two particles lies on the line joining them.)

There is no general analytical solution for the motion of three gravi-
tating bodies, however. In spite of this, we can explain many of the
important features of the motion with the help of the concept of center
of mass.

At first glance, the motion of the earth-moon-sun system appears
to be quite complex. In the absence of the sun, the earth and moon
would execute elliptical motion about their center of mass. As we shall
now show, that center of mass orbits the sun like a single planet, to good
approximation. The total motion is the simple result of two simultaneous
elliptical orbits.

Cr / I o
/ \ Ok Moon Earth
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4x 108m/

The center of mass of the earth-moon-sun system lies at

= MeRe + MmRm + M9R9

where Me, Mm, and Ms are the masses of the earth, moon, and sun,
respectively. The sun's mass is so large compared with the mass of
the earth or the moon that Ro ~ Rs, and to good approximation the cen-
ter of mass of the three body system lies at the center of the sun. Since
external forces are negligible, the sun is effectively at rest in an inertial
frame and it is natural to use a coordinate system with its origin at the
center of the sun so that R = 0.

Let re and rm be the positions of the earth and moon with respect to
the sun, and let us focus for the moment on the system composed of
the earth and moon. Their center of mass lies at

Rem =
M ere

Me + Mm

The external force on the earth-moon system is the gravitational pull
of the sun:

= -GMSI —- re H

The equation of motion of the center of mass is

(Me + Mm)Rem = F.

The earth and moon are so close compared with their distance from
the sun that we shall not make a large error if we assume re ~ rm ~ Rem-
With this approximation,

(Me | ^ MeXe + MJm)
JXr

-GMs(Me + Mm)Rem

R*

The center of mass of the earth and moon moves like a planet of mass
Me + Mm about the sun. The total motion is the combination of this
elliptical motion and the elliptical motion of the earth and moon about
their center of mass, as illustrated on the opposite page. (The drawing
is not to scale: the center of mass of the earth-moon system lies within
the earth, and the moon's orbit is always concave toward the sun. Also,
the plane of the moon's orbit is inclined by 5° with respect to the earth's
orbit around the sun.)
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\

Center of mass of |

Center of mass of

earth-moon-sun

system
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Orbit of earth Orbit of moon

Center of Mass Coordinates

Often a problem can be simplified by the right choice of coordi-
nates. The center of mass coordinate system, in which the origin
lies at the center of mass, is particularly useful. The drawing
illustrates the case of a two particle system with masses mi and
m2. In the initial coordinate system, x, y, z, the particles are
located at ri and r2 and their center of mass is at

R =
ra2r2

mi + m2

We now set up the center of mass coordinate system, x'', y', z',
with its origin at the center of mass. The origins of the old and
new system are displaced by R. The center of mass coordinates
of the two particles are

/ rj - ri - R

r'2 = r2 - R.

-y Center of mass coordinates are the natural coordinates for
an isolated two body system. For such a system the motion of
the center of mass is trivial—it moves uniformly. Furthermore,
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x[ + m2r
f
2 = 0 by the definition of center of mass, so that if

the motion of one particle is known, the motion of the other par-
ticle follows directly. Here is an example.

Example 3.8 The Push Me-Pull You

vl ,(O)=0

b

— rb—-1
ra

a

Two identical blocks a and b both of mass m slide without friction on a
straight track. They are attached by a spring of length I and spring
constant k. Initially they are at rest. At t = 0, block a is hit sharply,
giving it an instantaneous velocity v0 to the right. Find the velocities for
subsequent times. (Try this yourself if there is a linear air track
available—the motion is quite unexpected.)

Since the system slides freely after the collision, the center of mass
moves uniformly and therefore defines an inertial frame.

Let us transform to center of mass coordinates. The center of mass
lies at

D mra + ran
jtc =

m + m

= - (ra + rb).

As expected, R is always halfway between a and b. The center of mass
coordinates of a and b are

ra = ra — R

= i(rB - rb)

r'h=rh-R

= -i(ra - rb)
= —r'a.

The sketch below shows these coordinates.

i

b

1
1
1

'a

~ ra

(

Laboratory

a

Center of mass
coordinates
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The instantaneous length of the spring is ra — n = ra — rh . The
instantaneous departure of the spring from its equilibrium length is
ra — n — I = r'a — r'b — I, where I is the unstretched length of the
spring. The equations of motion in the center of mass system are

mf'a = — k(r'a — r'b — I)

mr'b = +k(r'a - H - I).

The form of these equations suggests that we subtract them, obtaining

- K) = -ZHr'a - H - I).

It is natural to introduce the departure of the spring from its equi-
librium length as a variable. Letting u = r'a — r'h — I, we have

mu + 2ku = 0.

This is the equation for simple harmonic motion which we discussed
in Example 2.14. The solution is

u = A sin cot + B cos cot,

where a> = \/2k/m. Since the spring is unstretched at t = 0, u(0) = 0
which requires B = 0. Furthermore, since u = ra — rh — I = ra — n — lt
we have at t = 0

= *;o(0) - t;6(0)

= Act COS (0)

so that

A = Vo/w

and

w = O>oA>) sin cot.

Since «£ — i£ = w, and v'a = —V&, we have

^o — ~^6 = i y o cos cot

The laboratory velocities are

Va = & +V'a

Vb = ife + t£
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Since R is constant, it is always equal to its initial value

R = iMO)

Putting these together gives

VQ

va = — (1 + cos coO
2

f6 = — (1 — COS O)t).
2

The masses move to the right on the average, but they alternately
come to rest in a push me-pull you fashion.

3.4 Impulse and a Restatement of the Momentum Relation

The relation between force and momentum is

F = — 3.16
dt

As a general rule, any law of physics which can be expressed in
terms of derivatives can also be written in an integral form. The
integral form of the force-momentum relationship is

F dt = P(0 - P(0). 3.17

The change in momentum of a system is given by the integral of
force with respect to time. This form contains essentially the
same physical information as Eq. (3.16), but it gives a new way of
looking at the effect of a force: the change in momentum is the
time integral of the force. To produce a given change in the

momentum in time interval t requires only that / F dt have the

appropriate value; we can use a small force acting for much of
the time or a large force acting for only part of the interval. The

integral j F dt is called the impulse. The word impulse calls to

mind a short, sharp shock, as in Example 3.8, where we talked of
giving a blow to a mass at rest so that its final velocity was v0.
However, the physical definition of impulse can just as well be
applied to a weak force acting for a long time. Change of momen-
tum depends only on JF dt, independent of the detailed time
dependence of the force.

Here are two examples involving impulse.
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Example 3.9 Rubber Ball Rebound

rpeak

A rubber ball of mass 0.2 kg falls to the floor. The ball hits with a speed
of 8 m/s and rebounds with approximately the same speed. High
speed photographs show that the ball is in contact with the floor for 10~3 s.
What can we say about the force exerted on the ball by the floor?

The momentum of the ball just before it hits the floor is Pa = —1.6k
kg-m/s and its momentum 10~3 s later is P6 = +1.6k kg-m/s. Since
ftb F dt = Pb - Pa, f

tb Fdt = 1.6k - (-1.6k) = 3.2k kg-m/s. Although
Jta Jta

the exact variation of F with time is not known, it is easy to find the average
force exerted by the floor on the ball. If the collision time is At = h — ta,
the average force Fav acting during the collision is

i: Fdt.

Since At = 10~3 s,

_ 3.2k kg-m/s
av 10"* s

= 3,200k N.

The average force is directed upward, as we expect. In more familiar
units, 3,200 N « 720 Ib—a sizable force. The instantaneous force on the
ball is even larger at the peak, as the sketch shows. If the ball hits a
softer surface, the collision time is longer and the peak force is less.

Actually, there is a weakness in our treatment of the rubber ball
rebound. In calculating the impulse JF dt, F is the total force. This
includes the gravitational force, which we have neglected. Proceeding
more carefully, we write

F = Ffloor + Fgrav

= Ffloor - Mgk.

The impulse equation then becomes

f10 8 Ffioor dt - f10 * Mgk dt = 3.2k kg-m/s.

The impulse due to the gravitational force is

- r10"8 Mgk dt = -Mgk J™'* dt = -(0.2)(9.8)(10-3)k
= -1.96 X 10"3k kg-m/s.

This is less than one-thousandth of the total impulse, and we can neglect
it with little error. Over a long period of time, gravity can produce a
large change in the ball's momentum (the ball gains speed as it falls, for
example). In the short time of contact, however, gravity contributes
little momentum change compared with the tremendous force exerted
by the floor. Contact forces during a short collision are generally so



132 MOMENTUM

huge that we can neglect the impulse due to other forces of moderate
strength, such as gravity or fr ict ion.

The last example reveals why a quick collision is more violent
than a slow collision, even when the initial and final velocities are
identical. This is the reason that a hammer can produce a force
far greater than the carpenter could produce on his own; the hard
hammerhead rebounds in a very short time compared with the
time of the hammer swing, and the force driving the hammer is
correspondingly amplified. Many devices to prevent bodily injury
in accidents are based on the same considerations, but applied in
reverse—they essentially prolong the time of the collision. This
is the rationale for the hockey player's helmet, as well as the auto-
mobile seat belt. The following example shows what can happen
in even a relatively mild collision, as when you jump to the ground.

Example 3.10 How to Avoid Broken Ankles

Animals, including humans, instinctively reduce the force of impact with
the ground by flexing while running or jumping. Consider what happens
to someone who hits the ground with his legs rigid.

Suppose a man of mass M jumps to the ground from height h, and
that his center of mass moves downward a distance s during the time of
collision with the ground. The average force during the collision is

F = —?» 1
t

where t is the time of the collision and v0 is the velocity with which he hits
the ground. As a reasonable approximation, we can take his accelera-
tion due to the force of impact to be constant, so that the man comes
uniformly to rest. In this case the collision time is given by Vo = 2s/t, or

t = 2-s-
VQ

Inserting this in Eq. (1) gives

F - *5L" . 2

2s

For a body in free fall for distance h,

VQ2 = 2gh.

Inserting this in Eq. (2) gives

F = Mg--
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If the man hits the ground rigidly in a vertical position, his center of
mass will not move far during the collision. Suppose that his center of
mass moves 1 cm, which roughly means that his height momentarily
decreases by approximately 2 cm. If he jumps from a height of 2 m,
the force is 200 times his weight!

Consider the force on a 90-kg (~200-lb) man jumping from a height of
2 m. The force is

F = 90 kg X 9.8 m / s 2 X 200

= 1.8 X 105 N.

Where is a bone fracture most likely to occur? The force is a maxi-
mum at the feet, since the mass above a horizontal plane through the
man decreases with height. Thus his ankles will break, not his neck.
If the area of contact of bone at each ankle is 5 cm2, then the force per
unit area is

F _ 1.8 X 105 N

A ~ 10 cm2

= 1.8 X 104 N/cm2.

This is approximately the compressive strength of human bone, and
so there is a good probability that his ankles will snap.

Of course, no one would be so rash as to jump rigidly. We instinc-
tively cushion the impact when jumping by flexing as we hit the ground,
in the extreme case collapsing to the ground. If the man's center of
mass drops 50 cm, instead of 1 cm, during the collision, the force is only
one-fiftieth as much as we calculated, and there is no danger of com-
pressive fracture.

3.5 Momentum and the Flow of Mass

Analyzing the forces on a system in which there is a flow of mass
becomes terribly confusing if we try to apply Newton's laws blindly.
A rocket provides the most dramatic example of such a system,
although there are many other everyday problems where the same
considerations apply—for instance, the problem of calculating the
reaction force on a fire hose, or of calculating the acceleration of
a snowball which grows larger as it rolls downhill.

There is no fundamental difficulty in handling any of these
problems provided that we keep clearly in mind exactly what is
included in the system. Recall that F = dP/dt [Eq. (3.12)] was
established for a system composed of a certain set of particles.
When we apply this equation in the integral form,

t
tbFdt = P(tb)-P(ta),

la
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it is essential to deal with the same set of particles throughout
the time interval ta to tb; we must keep track of all the particles
that were originally in the system. Consequently, the mass of
the system cannot change during the time of interest.

Example 3.11 Mass Flow and Momentum

A spacecraft moves through space with constant velocity v. The space-
craft encounters a stream of dust particles which embed themselves in
it at rate dm/dt. The dust has velocity u just before it hits. At time t
the total mass of the spacecraft is M(t). The problem is to find the
external force F necessary to keep the spacecraft moving uniformly.
(In practice, F would most likely come from the spacecraft's own rocket
engines. For simplicity, we can visualize the source F to be completely
external—an invisible hand, so to speak.)

Let us focus on the short time interval between t and t + At. The
drawings below show the system at the beginning and end of the interval.

Am to be

added in time At

System boundary;

Time t m a s s o f s y s t e m " M^ + A m
System boundary;

mass of system = M(t) + Am

Time t + At

Let Am denote the mass added to the satellite during At. The sys-
tem consists of M(t) and Am. The initial momentum is

P(0 = M(t)y + (Am)u.

The final momentum is

P(* + At) = M(t)v + (Ara)v.

The change in momentum is

AP = P(t + At) - P(0

= (v — u) Am.
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The rate of change of momentum is approximately

AP Am
— = (v — u)
At V ' At

In the limit At -> 0, we have the exact result

dP dm
— = (v — u)
dt dt

Since F = dP/dt, the required external force is

- dm

Note that F can be either positive or negative, depending on the direction
of the stream of mass. If u = v, the momentum of the system is con-
stant, and F = 0.

The procedure of isolating the system, focusing on differentials,
and taking the limit may appear a trifle formal. However, the
procedure is helpful in avoiding errors in a subject where it is
easy to become confused. For instance, a frequent error is to
argue that F = (d/dt)(mv) = m(dv/dt) + v(dm/dt). In the last
example v is constant, and the result would be F = v(dm/dt)
rather than (v - u)(dm/dt). The difficulty arises from the fact
that there are several contributions to the momentum, so that the
expression for the momentum of a single particle, p = mv, is not
appropriate. The limiting procedure illustrated in the last exam-
ple avoids such ambiguities.

Example 3.12 Freight Car and Hopper

Sand falls from a stationary hopper onto a freight car which is moving
with uniform velocity v. The sand falls at the rate dm/dt. How much
force is needed to keep the freight car moving at the speed v?

In this case, the initial speed of the sand is 0, and

dP ,/dm\ dm
dt J\dtJ dt

The required force is F = v dm/dt. We can understand why this force
is needed by considering in detail just what happens to a sand grain as
it lands on the surface of the freight car. What would happen if the
surface of the freight car were slippery?
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Example 3.13 Leaky Freight Car

Now consider a related case. The same freight car is leaking sand at
the rate dm/dt; what force is needed to keep the freight car moving
uniformly with speed v?

Here the mass is decreasing. However, the velocity of the sand after
leaving the freight car is identical to its initial velocity, and its momentum
does not change. Since dP/dt = 0, no force is required. (The sand
does change its momentum when it hits the ground, and there is a
resulting force on the ground, but that does not affect the motion of the
freight car.)

The concept of momentum is invaluable in understanding the
motion of a rocket. A rocket accelerates by expelling gas at a
high velocity; the reaction force of the gas on the rocket accelerates
the rocket in the opposite direction. The mechanism is illustrated
by the drawings of the cubical chamber containing gas at high
pressure.

The gas presses outward on each wall with the force Fa. (We
show only four walls for clarity.) The vector sum of the Fa's is
zero, giving zero net force on the chamber. Similarly each wall
of the chamber exerts a force on the gas F& = — Fa; the net force
on the gas is also zero. In the right hand drawings below, one wall

Force on chamber

Force on gas

has been removed. The net force on the chamber is Fa, to the
right. The net force on the gas is Fb, to the left. Hence the gas
accelerates to the left, and the chamber accelerates to the right.
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To analyze the motion of the rocket in detail, we must equate
the external force on the system, F, with the rate of change of
momentum, dP/dt. Consider the rocket at time L Between t
and t + At a mass of fuel Am is burned and expelled as gas with
velocity u relative to the rocket. The exhaust velocity u is deter-
mined by the nature of the propellants, the throttling of the
engine, etc., but it is independent of the velocity of the rocket.

The sketches below show the system at time t and at time

Am M

•

s

>

• V
y

Time/

\
\

\
1

/

v + Av + u , ^

M

Time/ + At

\

/

v + Av

t + A£. The system consists of Am plus the remaining mass of
the rocket M. Hence the total mass is M + Am.

The velocity of the rocket at time t is v(t), and at t + A£, it is
v + Av. The initial momentum is

P(0 = (M + Am)v

and the final momentum is

P(t + AO = M(y + Av) + Am(v + Av + u).

The change in momentum is

AP = P(Z + AO - P(0

= MAv + (Am)u + Am Av

Therefore,

dP ,. AP Z^Aif Am , AmAv \
—• = lim — = lim I M h u I
dt At->0 &t At_>0 \ At At At )

dv dm Q 1 Q
= M h u—-• 3.18

dt dt
Note that we have defined u to be positive in the direction of v.
In most rocket applications, u is negative, opposite to v. It is
inconvenient to have both m and M in the equation, dm/dt is
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the rate of increase of the exhaust mass. Since this mass comes
from the rocket,

dm _ dM

~dt ~ ~ ~dt"

Using this in Eq. (3.18), and equating the external force to dP/dt,
we obtain the fundamental rocket equation

_ , - 7 3.19
dt dt

It may be useful to point out two minor subtleties in our develop-
ment. The first is that the velocities have been expressed with
respect to an inertial frame, not a frame attached to the rocket.
The second is that we took the final velocity of the element of
exhaust gas to be v + Av + u rather than v + u. This is correct
(consult Example 3.6 on spring gun recoil if you need help in seeing
the reason), but actually it makes no difference here, since either
expression yields the same final result when the limit is taken.
Here are two examples on rockets.

Example 3.14 Rocket in Free Space

If there is no external force on a rocket, F = 0 and its motion is given by

M- = u —
dt dt

or

dv _ u dM
dt ~ M~df

Generally the exhaust velocity u is constant, in which case it is easy to
integrate the equation of motion.

dv _ ftf 1 dM
dt/

t/ dv ft/ 1

c ttdt = Ulu M dt
fMf dM

= u / —
JMo M

or

Mf
vf - v0 = u In — -

Mo
= - u I n — -

Mf
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If v0 = 0, then

Mo
v, = - " I n — •

Mf

The final velocity is independent of how the mass is released—the fuel
can be expended rapidly or slowly without affecting V/. The only
important quantities are the exhaust velocity and the ratio of initial to
final mass.

The situation is quite different if a gravitational field is present, as
shown by the next example.

Example 3.15 Rocket in a Gravitational Field

If a rocket takes off in a constant gravitational field, Eq. (3.19) becomes

where u and g are directed down and are assumed to be constant.

dy u dM

dt = M~dt + 9 '

Integrating with respect to time, we obtain

v, - v0 = u In (j± j + g(tf - *o).

Let v0 = 0, U = 0, and take velocity positive upward.

V/ = u I n Iif)-"-
Now there is a premium attached to burning the fuel rapidly. The
shorter the burn time, the greater the velocity. This is why the takeoff
of a large rocket is so spectacular—it is essential to burn the fuel as
quickly as possible.

3.6 Momentum Transport

Nearly everyone has at one time or another been on the receiving
end of a stream of water from a hose. You feel a push. If the
stream is intense, as in the case of a fire hose, the push can be
dramatic—a jet of high pressure water can be used to break
through the wall of a burning building.
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o c>0 o o

The push of a water stream arises from the momentum it
transfers to you. Unless another external force gives you equal
momentum in the opposite direction, off you go. How can a
column of water flying through the air exert a force which is every
bit as real as a force transmitted by a rigid steel rod? The reason
is easy to see if we picture the stream of water as a series of small
uniform droplets of mass m, traveling with velocity v0. Let the
droplets be distance I apart and suppose that the stream is
directed against your hand. Assume that the drops collide with-
out rebound and simply run down your arm. Consider the force
exerted by your hand on the stream. As each drop hits there is
a large force for a short time. Although we do not know the
instantaneous force, we can find the impulse /droplet on each drop
due to your hand.

' dro] Fdtp l e t j l collision

= Ap

= m(vf — v0)

= — mv0.

The impulse on your hand is equal and opposite.

/hand =

The positive sign means that the impulse on the hand is in the
same direction as the velocity of the drop. The impulse equals
the area under one of the peaks shown in the drawing. If there
are many collisions per second, you do not feel the shock of each
drop. Rather, you feel the average force F&v indicated by the
dashed line in the drawing. The area under F&v during one colli-
sion period T (the time between collisions) is identical to the
impulse due to one drop.

- h1 collision
Fdt

Since T = l/v0 and JF dt = mv0, the average force is

mv0
= ~~T~

m
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Here is another way to find the average force. Consider length
L of the stream just about to hit the surface. The number of
drops in L is L/l, and since each drop has momentum mv0, the
total momentum is

L
Ap = - mv0.

v

All these drops will strike the wall in time

v0

The average force is

Ap
av ~~ ~At

m 2

I '

To apply this model to a fluid, consider a stream moving with
speed v. If the mass per unit length is m/l = X, the momentum
per unit length is \v and the rate at which the stream transports
momentum to the surface is

dp-f- = \v2.
dt

3.20

If the stream comes to rest at the surface, the force on the sur-
face is

F = \v2. 3.21

Example 3.16 Momentum Transport to a Surface

A stream of particles of mass m and separation I hits a perpendicular
surface with velocity v. The stream rebounds along the original line of
motion with velocity v'. The mass per unit length of the incident stream
is X = m/l. What is the force on the surface?

The incident stream transfers momentum to the surface at the rate
X?;2. However, the reflected stream does not carry it away at the rate
XV2, since the density of the stream must change at the surface. The
number of particles incident on the surface in time A£ is v At/I and their
total mass is Am = mv At/I. Hence, the rate at which mass arrives at
the surface is

dm m
— = _ v = \v,
dt I
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The rate at which mass is carried away from the surface is XV. Since
mass does not accumulate on the surface, these rates must be equal.
Hence XV = \v, and the force on the surface is

dt dt
= \v(vf + v).

If the stream collides without rebound, then v' — 0 and F = \v2, in
agreement with our previous result. If the particles.undergo perfect
reflection, then v' — v, and F = 2\v2. The actual force lies somewhere
between these extremes.

We can generalize the idea of momentum transport to three
dimensions. Consider a stream of fluid which strikes an object
and rebounds in some arbitrary direction. For simplicity we
assume that the incident stream is uniform and that in time At
it transports momentum APt-. The direction of APt is parallel to
the initial velocity vt and APi = X^2 At. During the same interval
At the rebounding stream carries away momentum AP/f where
APf = \fVf

2 At; the direction of APf is parallel to the final velocity
vf. The vectors are shown in the sketch.

The net momentum change of the fluid in At is

APnuid = APf — APi.

The rate of change of the fluid's momentum is

\dt Aiuid \dtjf \dt

By Newton's second law, (dP/dt)nuid equals the force on the fluid
due to the object. By Newton's third law, the force on the object
due to the fluid is

\dt /fluid

W. \dt),

F =

= Pi - Pf. 3.22

The sketches illustrate this result.
Unless there is some opposing force, the object will begin to

accelerate. If Pf = Pit the stream transfers no momentum and
F = 0.
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The force on a moving airplane or boat can be found by con-

sidering the effect of a multitude of streams hitting the surface,

each with its own velocity. Although the mathematical formalism

for analyzing this would lead us too far afield, the physical principle

is the same: momentum transport.

Example 3.17 A Dike at the Bend of a River

The problem is to build a dike at the bend of a river to prevent flooding
when the river rises. Obviously the dike has to be strong enough to
withstand the static pressure of the river pgh, where p is the density of
the water and h is the height from the base of the dike to the surface of
the water. However, because of the bend there is an additional pres-
sure, the dynamic pressure due to the rush of water. How does this
compare with the static pressure?

We approximate the bend by a circular curve with radius R, and focus
our attention on a short length of the curve subtending angle A0. We
need only concern ourselves with that section of the river above the base
of the dike, and we consider the volume of the river bounded by the bank
a, the dike b, and two imaginary surfaces c and d. Momentum is trans-
ferred into the volume through surface c and out through surface d at
rate P = \v2 = pAv2. Here A is the cross sectional area of the river
lying above the base of the dike, A = hw. (Note that pA = A = mass
per unit length of the river.)

However, surfaces c and d are not parallel. The rate of change of
the stream's momentum is

P = pd - K

As we can see from the vector drawing below, P is radially inward and has
magnitude

|P| = P Ad.

The dynamic force on the dike is radially outward, and has the same
magnitude, P Ad. The force is exerted over the area (R A6)h, and the
dynamic pressure is therefore

pressure =

IPI =PA0

PAd

RAOh

pAv2

~Rh

pwv2

Force on dike = - P
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The ratio of dynamic to static pressure is

dynamic pressure _ pwv2 1 _ w v2

static pressure R pgh hRg

width centripetal acceleration

depth g

For a river in flood with a speed of 10 mi/h (approximately 14 ft/s), a
radius of 2,000 ft, a flood height of 3 ft, and a width of 200 ft, the ratio is
0.22, so that the dynamic pressure is by no means negligible. The ratio
is even larger near the surface of the river where the static pressure is
small.

Example 3.18 Pressure of a Gas

Z t

<"

1 A
1 *
1
V

1
1

As a further application of the idea of momentum transport, let us find
the pressure exerted by a gas. Although our argument will be somewhat
simpleminded, it exhibits the essential ideas and gives the same result as
more refined arguments.

Assume that there are n atoms per unit volume of the gas, each having
mass m, and that they move randomly. Let us find the force exerted on
an area A in the yz plane due to motion of the atoms in the x direction.
We make the plausible assumption that it is permissible to neglect motion
in the y and z direction, and treat only motion parallel to the x axis.
Suppose that all atoms have the same speed, vx. The rate at which they
hit the surface is inAvx, where the factor of i is introduced because the
atoms can move in either direction with equal probability. The momen-
tum carried by each atom is mvx. It is unlikely that the atoms come to
rest after the collision; this would correspond to the freezing of the gas
on the walls. On the average, they must leave at the same rate as they
arrive, which means that the average change in momentum is 2mvx.
Hence, the rate at which momentum changes due to collisions with area
A is

(2mvx)— = ( - nAvx ]
dt \2 7

= mnAvx
2.

The force is

= mnAvx
2

and the pressure Px on the x surface is

mnvx
2.
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The assumption that vx has a fixed value is actually unnecessary. If

the atoms have many different instantaneous speeds, then it can be

shown that vx
2 should be replaced by its average vx

2, and Px = nmvx
2.

By an identical argument we have Py = mnvv
2 and Pz = nmvz

2. How-

ever, since the pressure of a gas should not depend on direction, we

have Px = Py = Pz, which implies that vx
2 = vy

2 = vg
2. The mean

squared velocity is v2 = vx
2 + vy

2 + vz
2, so that vx

2 = %v2 and the pres-

sure is

P = inmv2.

This is a famous result of the kinetic theory of gas, and it is a crucial
point in the argument connecting heat and kinetic energy.

Note 3.1 Center of Mass

[
-1

a

- / •

dx

dm - o dx dy
/

] • *

12 b

In this Note we shall find the center of mass of some nonsymmetrical
objects. These examples are trivial if you have had experience eval-
uating two or three dimensional integrals. Otherwise, read on.

1. Find the center of mass of a thin rectangular plate with sides of length
a and b, whose mass per unit area a varies in the following fashion:
a = (To(xy/ab), where cr0 is a constant.

R = —
M

2/1)0" dx dy

We find M, the mass of the plate, as follows:

f b fa
M = I / a dx dyJo Jo y

fb fa Xy
= L L (To ~ i dx dy.Jo jo a i)

We f i rs t in tegra te over x, t r ea t i ng t / a s a cons tan t .

1:

b y a

2 26

y = b 1
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The x component of R is

X = ±ffxrdxdy

M ab

1 (To

M ab

4 c

aoab

2
= - a.

JO

a3

roa-

6

3

b2

~2

>b

Similarly, Y = |6 .

2. Find the center of mass of a uniform solid hemisphere of radius R
and mass M.

From symmetry it is apparent that the center of mass lies on the z
axis, as illustrated. Its height above the equatorial plane is

M J
zdM.

The integral is over three dimensions, but the symmetry of the situ-
ation lets us treat it as a one dimensional integral. We mentally sub-
divide the hemisphere into a pile of thin disks. Consider the circular
disk of radius r and thickness dz. Its volume is dV = irr2 dz, and its
mass is dM = p dV = (M/V)(dV), where V = iirRK Hence,

~ M J "V zdV

TTT2Z dz.

To evaluate the integral we need to find r in terms of z.
r2 = R2 - z2, we have

- z2) dz

R

0

Since
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Problems 3.1 The density of a thin rod of length I varies with the distance x from
one end as p = poX2/l2. Find the position of the center of mass.

Ans. X = 3Z/4

3.2 Find the center of mass of a thin uniform plate in the shape of an
equilateral triangle with sides a.

3.3 Suppose that a system consists of several bodies, and that the posi-
tion of the center of mass of each body is known. Prove that the center
of mass of the system can be found by treating each body as a particle
concentrated at its center of mass.

3.4 An instrument-carrying projectile accidentally explodes at the top of
its trajectory. The horizontal distance between the launch point and the
point of explosion is L. The projectile breaks into two pieces which fly
apart horizontally. The larger piece has three times the mass of the
smaller piece. To the surprise of the scientist in charge, the smaller
piece returns to earth at the launching station. How far away does the
larger piece land? Neglect air resistance and effects due to the earth's
curvature.

3.5 A circus acrobat of mass M leaps straight up with initial velocity Vo
from a trampoline. As he rises up, he takes a trained monkey of mass
m off a perch at a height h above the trampoline.

What is the maximum height attained by the pair?

3.6 A light plane weighing 2,500 Ib makes an emergency landing on a
short runway. With its engine off, it lands on the runway at 120 f t / s .
A hook on the plane snags a cable attached to a 250-lb sandbag and drags
the sandbag along. If the coefficient of friction between the sandbag
and the runway is 0.4, and if the plane's brakes give an additional retard-
ing force of 300 Ib, how far does the plane go before it comes to a stop?

3.7 A system is composed of two blocks of mass mx and m2 connected
by a massless spring with spring constant k. The blocks slide on a fric-
tionless plane. The unstretched length of the spring is I. Initially m2

is held so that the spring is compressed to 1/2 and mx is forced against
a stop, as shown. m2 is released at t = 0.

Find the motion of the center of mass of the system as a function of
time.
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3.8 A 50-kg woman jumps straight into the air, rising 0.8 m from the
ground. What impulse does she receive from the ground to attain this
height?

3.9 A freight car of mass M contains a mass of sand m. At t = 0 a
constant horizontal force F is applied in the direction of rolling and at
the same time a port in the bottom is opened to let the sand flow out at
constant rate dm/dt. Find the speed of the freight car when all the sand
is gone. Assume the freight car is at rest at t = 0.

3.10 An empty freight car of mass M starts from rest under an applied
force F. At the same time, sand begins to run into the car at steady
rate b from a hopper at rest along the track.

Find the speed when a mass of sand, m, has been transferred. (Hint:
There is a way to do this problem in one or two lines.)
Ans. clue. If M = 500 kg, b = 20 kg/s, F = 100 N, then v = 1.4 m/s at

t = 10 s

3.11 Material is blown into cart A from cart B at a rate b kilograms per
second. The material leaves the chute vertically downward, so that it
has the same horizontal velocity as cart B, u. At the moment of interest,
cart A has mass M and velocity v, as shown. Find dv/dt, the instan-
taneous acceleration of A.

3.12 A sand-spraying locomotive sprays sand horizontally into a freight
car as shown in the sketch. The locomotive and freight car are not
attached. The engineer in the locomotive maintains his speed so that
the distance to the freight car is constant. The sand is transferred at
a rate dm/dt = 10 kg/s with a velocity of 5 m/s relative to the locomotive.
The car starts from rest with an initial mass of 2,000 kg. Find its speed
after 100 s.

3.13 A ski tow consists of a long belt of rope around two pulleys, one at
the bottom of a slope and the other at the top. The pulleys are driven
by a husky electric motor so that the rope moves at a steady speed of
1.5 m/s. The pulleys are separated by a distance of 100 m, and the angle
of the slope is 20°.

Skiers take hold of the rope and are pulled up to the top, where they
release the rope and glide off. If a skier of mass 70 kg takes the tow
every 5 s on the average, what is the average force required to pull the
rope? Neglect friction between the skis and the snow.

3.14 TV men, each with mass m, stand on a railway flatcar of mass M.
They jump off one end of the flatcar with velocity u relative to the car.
The car rolls in the opposite direction without friction.

a. What is the final velocity of the flatcar if all the men jump at the
same time?

b. What is the final velocity of the flatcar if they jump off one at a
time? (The answer can be left in the form of a sum of terms.)
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c. Does case a or case b yield the largest final velocity of the flat car?
Can you give a simple physical explanation for your answer?

3.15 A rope of mass M and length I lies on a frictionless table, with a
short portion, l0, hanging through a hole. Initially the rope is at rest.

a. Find a general equation for x(t), the length of rope through the
hole.

Ans. x = Ae* + Be~-*, y2 = g/l

b. Evaluate the constants A and B so that the initial conditions are
satisfied.

3.16 Water shoots out of a fire hydrant having nozzle diameter D with
nozzle speed Vo- What is the reaction force on the hydrant?

3.17 An inverted garbage can of weight W is suspended in air by water
from a geyser. The water shoots up from the ground with a speed v0,
at a constant rate dm/dt. The problem is to find the maximum height
at which the garbage can rides. What assumption must be fulfilled for
the maximum height to be reached?
Ans. clue. \1v0 = 20 m/s, W = 8.2 N, dm/dt = 0.5 kg/sf then hm&x « 15 m

3.18 A raindrop of initial mass Mo starts falling from rest under the
influence of gravity. Assume that the drop gains mass from the cloud
at a rate proportional to the product of its instantaneous mass and its
instantaneous velocity:

dM

~dt~
kMV,

where k is a constant.
Show that the speed of the drop eventually becomes effectively con-

stant, and give an expression for the terminal speed. Neglect air
resistance.

3.19 A bowl full of water is sitting out in a pouring rainstorm. Its sur-
face area is 500 cm2. The rain is coming straight down at 5 m/s at a rate
of 10~3 g/cm2s. If the excess water drips out of the bowl with negli-
gible velocity, find the force on the bowl due to the falling rain.

What is the force if the bowl is moving uniformly upward at 2 m/s?

3.20 A rocket ascends from rest in a uniform gravitational field by eject-
ing exhaust with constant speed u. Assume that the rate at which mass
is expelled is given by dm/dt = ym, where m is the instantaneous mass of
the rocket and 7 is a constant, and that the rocket is retarded by air
resistance with a force bv, where b is a constant. Find the velocity of the
rocket as a function of time.

Ans. clue. The terminal velocity is (yu — g)/b.
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4.1 Introduction

In this chapter we make another attack on the fundamental prob-
lem of classical mechanics—predicting the motion of a system
under known interactions. We shall encounter two important
new concepts, work and energy, which first appear to be mere
computational aids, mathematical crutches so to speak, but which
turn out to have very real physical significance.

As first glance there seems to be no problem in finding the
motion of a particle if we know the force; starting with Newton's
second law, we obtain the acceleration, and by integrating we can
find first the velocity and then the position. It sounds simple,
but there is a problem; in order to carry out these calculations we
must know the force as a function of time, whereas force is usually
known as a function of position as, for example, the spring
force or the gravitational force. The problem is serious because
physicists are generally interested in interactions between systems,
which means knowing how the force varies with position, not how
it varies with time.

The task, then, is to find v(t) from the equation

rfv
m - = F(r), 4.1

at

where the notation emphasizes that F is a known function of
position. A physicist with a penchant for mathematical forma-
lism might stop at this point and say that what we are dealing
with is a problem in differential equations and that what we ought
to do now is study the schemes available, including numerical
methods, for solving such equations. From the strict calcula-
tional point of view, he is right. However, such an approach
is too narrow and affords too little physical understanding.

Fortunately, the solution to Eq. (4.1) is simple for the import-
ant case of one dimensional motion in a single variable. The
general case is more complex, but we shall see that it is not
too difficult to integrate Eq. (4.1) for three dimensional motion
provided that we are content with less than a complete solution.
By way of compensation we shall obtain a very helpful physical
relation, the work-energy theorem; its generalization, the law of
conservation of energy, is among the most useful conservation
laws in physics.

Let's consider the one dimensional problem before tackling the
general case.
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4.2 Integrating the Equation of Motion in One Dimension

A large class of important problems involves only a single variable
to describe the motion. The one dimensional harmonic oscillator
provides a good example. For such problems the equation of
motion reduces to

d2x
m -

or

m — = F(x). 4.2
at

We can solve this equation for v by a mathematical trick. First,
formally integrate m dv/dt = F(x) with respect to x:

dv
m

xb dV _ fxb

—dx= F(x) dx.
a dt ha

dt

The integral on the right can be evaluated by standard methods
since F(x) is known. The integral on the left is intractable as it
stands, but it can be integrated by changing the variable from x
to t. The trick is to use1

dx = (^) dt
\dtj

= v dt.

Then

fxb dv rtb dv
ml —dx = rn — v dt

ha dt 1*° dt
rtb d A \

= m / - ( - v2) dt
Jta dt\2 )

= - mv2

where xa = x(ta), va = v(ta), etc.
Putting these results together yields

F(x) dx. 4.3

Change of variables using differentials is discussed in Note 1.1.
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Alternatively, we can use indefinite upper limits in Eq. (4.3):

imv2 - \mv2 = fX F(x) dx, 4.4
J Xa

where v is the speed of the particle when it is at position x. Equa-
tion (4.4) gives us v as a function of x. Since v = dx/dt, we could
solve Eq. (4.4) for dx/dt and integrate again to find x(t). Rather
than write out the general formula, it is easier to see the method
by studying a few examples.

Example 4.1 Mass Thrown Upward in a Uniform Gravitational Field

A mass m is thrown vertically upward with initial speed v0. How high
does it rise, assuming the gravitational force to be constant, and neglect-
ing air friction?

Taking the z axis to be directed vertically upward,

F = — mg.

Equation (4.3) gives

imvS - imv0
2 = [2l Fdz

Jzo

= — mg I l dz
Jzo

= -mg(zi - z0).

At the peak, Vi = 0 and we obtain the answer
, t>of

*i = Zo + T"
2<7

It is interesting to note that the solution makes no reference to time
at all. We could have solved the problem by applying Newton's second
law, but we would have had to eliminate t to obtain the result.

Here is an example that is not easy to solve by direct application
of Newton's second law.

Example 4.2 Solving the Equation of Simple Harmonic Motion

In Example 2.17 we discussed the equation of simple harmonic motion
and pulled the solution out of a hat without proof. Now we shall derive
the solution using Eq. (4.4).
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M v I1 'J y 01 I
i j

Equilibrium
position

Consider a mass M attached to a spring. Using the coordinate x
measured from the equilibrium point, the spring force is F = — kx.
Then Eq. (4.4) becomes

= -k fX

Jxo

= -ikx2 +

xdx

The initial coordinates are labeled by the subscript 0.
In order to find x and v, we must know their values at some time t0.

Physically, this arises because the equation of motion by itself cannot
completely specify the motion; we also need to know a set of initial
conditions, in this case the initial position and velocity.1 We are free to
choose any initial conditions we wish. Let us consider the case where at
t = 0 the mass is released from rest, v0 = 0, at a distance x0 from the
origin. Then

and

dx

Separating the variables gives

The integral on the left hand side is arcsin (x/x0). (The integral is listed
in standard tables. Consulting a table of integrals is just as respectable
for a physicist as consulting a dictionary is for a writer. Of course, in
both cases one hopes that experience gradually reduces dependence.)
Denoting \/k/M by co, we obtain

arcsin ©
arcsin I — I — arcsin 1 = wt.

1 In the language of differential equations, Newton's second law is a "second
order" equation in the position; the highest order derivative it involves is the
acceleration, which is the second derivative of the position with respect to time.
The theory of differential equations shows that the complete solution of a dif-
ferential equation of nth order must involve n initial conditions.
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Since arcsin 1 = TT/2, we obtain

/ 7r\
in ( cot -\— I

V 2/
x = x0 s in

= Xo cos ait.

Note that the solution indeed satisfies the given initial conditions: at
t = 0, x = x0 cos 0 = x0, and x = z0co sin 0 = 0. For these conditions
our result agrees with the general solution given in Example 2.14.

4.3 The Work-energy Theorem in One Dimension

In Sec. 4.2 we demonstrated the formal procedure for integrating
Newton's second law with respect to position. The result was

imvb
2 — \mva

2 = / F(x) dx,

which we now wish to interpret in physical terms.
The quantity \mv2 is called the kinetic energy K, and the left

hand side can be written Kb — Ka. The integral / ** F(x) dx is

called the work Wba done by the force F on the particle as the
particle moves from a to 6. Our relation now takes the form

Wba = Kb - Ka. 4.5

This result is known as the work-energy theorem or, more pre-
cisely, the work-energy theorem in one dimension. (We shall
shortly see a more general statement.) The unit of work and
energy in the SI system is the joule (J):

U = 1 kgm2/s2.

The unit of work and energy in the cgs system is the erg:

1 erg = 1 gmcm2/s2

= 10-7 J.

The unit work in the English system is the foot-pound:

1 ft-lb « 1.336 J.

Example 4.3 Vertical Motion in an Inverse Square Field

A mass m is shot vertically upward from the surface of the earth with
initial speed v0. Assuming that the only force is gravity, find its maxi-
mum altitude and the minimum value of v0 for the mass to escape the
earth completely.



SEC. 4.3 THE WORK-ENERGY THEOREM IN ONE DIMENSION 157

The force on m is

GMem
t = .

r2

The problem is one dimensional in the variable r, and it is simple to find
the kinetic energy at distance r by the work-energy theorem.

Let the particle start at r = Re with initial velocity v0.

K(r)~ K(Re)= r F(r)dr
J Re

= -GM.m / -
J Re r2

or

imv(r)2 — imvo2 = GMem ( )•
\r Re/

We can immediately find the maximum height of m. At the highest
point, v(r) = 0 and we have

71--L^= 2GMt

It is a good idea to introduce known familiar constants whenever possible.
For example, since g = GMe/Re

2, we can write

or

Re
max — „ "

1 - *"-

The escape velocity from the earth is the initial velocity needed to
move rmax to infinity. The escape velocity is therefore

Escape = V2<JRe

= y/2 X 9.8 X 6.4 X 106

= 1.1 X 104 m/s.

The energy needed to eject a 50-kg spacecraft from the surface of the
earth is

W = iM»e
2

s o a p e

= i(50)(l . l X 104)2 = 3.0 X 109 J.
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Ar

4.4 Integrating the Equation of Motion in Several Dimensions

Returning to the central problem of this chapter, let us try to
integrate the equation of motion of a particle acted on by a force
which depends on position.

at
4.6

In the case of one dimensional motion we integrated with respect
to position. To generalize this, consider what happens when the
particle moves a short distance Ar.

We assume that Ar is so small that F is effectively constant over
this displacement. If we take the scalar product of Eq. (4.6)
with Ar, we obtain

dv
F • Ar = m -— • Ar.

dt
4.7

The sketch shows the trajectory and the force at some point
along the trajectory. At this point,

F • Ar = F Ar cos 0.

Perhaps you are wondering how we know Ar, since this requires
knowing the trajectory, which is what we are trying to find. Let
us overlook this problem for a few moments and pretend we know
the trajectory.

Now consider the right hand side of Eq. (4.7), m(dv/dt) • Ar.
We can transform this by noting that v and Ar are not independent;
for a sufficiently short length of path, v is approximately constant.
Hence Ar = vA£, where At is the time the particle requires to
travel Ar, and therefore

v — =
dt

dv dv
m — • Ar = m — • v A£.

dt dt

We can transform Eq. (4.7) with the vector identity1

1 d r 2 ,
dt idC '

1 The identity A • (dk/dt) = %(d/dt) (A2) is easily proved:

1 d,m _x

dt

4.8

dt
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Equation (4.7) becomes

m d
F - A r = - - ( » » ) At.

2 at
4.9

The next step is to divide the entire trajectory from the initial
position ra to the final position r6 into N short segments of length
Ary, where j is an index numbering the segments. (It makes no
difference whether all the pieces have the same length.) For each
segment we can write a relation similar to Eq. (4.9):

m d
F<ry).Ar, = - -

2 at
4.10

where \j is the location of segment y, vy is the velocity the particle
has there, and At3- is the time it spends in traversing it. If we add
together the equations of all the segments, we have

N
wi d

4.11

Next we take the limiting process where the length of each seg-
ment approaches zero, and the number of segments approaches
infinity. We have

2 dt
4.12

where ta and tb are the times corresponding to ra and rb. In con-
verting the sum to an integral, we have dropped the numerical
index j and have indicated the location of the first segment Ari
by ra, and the location of the last section Ar^ by r6.

The integral on the right in Eq. (4.12) is

i/:!<«*-*«•
= imvb

tb

ta

2

This represents a simple generalization of the result we found for
one dimension. Here, however, v2 = vx

2 + vy
2 + vz

2, whereas
for the one dimensional case we had v2 = vx

2.
Equation (4.12) becomes

/ F • dr = imvb2 — imva
2. 4.13

The integral on the left is called a line integral. We shall see how
to evaluate line integrals in the next two sections, and we shall
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also see how to interpret Eq. (4.13) physically. However, before
proceeding, let's pause for a moment to summarize.

Our starting point was F(r) = m dv/dt. All we have done is to
integrate this equation with respect to distance, but because we
described each step carefully, it looks like many operations are
involved. This is not really the case; the whole argument can be
stated in a few lines as follows:

F

Ja

dv
= m —

dt

rb
= I m

rb
= m

rb m
~~ Ja 2

dv

dt

dv

dt

d

dt

•dr

•vdt

(v*) dt

= \mvb
2 —

4.5 The Work-energy Theorem

We now want to interpret Eq. (4.13) in physical terms. The
quantity \mv2 is called the kinetic energy K, and the right hand
side of Eq. (4.13) can be written as Kb — Ka. The integral

frb

/ F • dr is called the work Wba done by the force F on the particle
J ra

as the particle moves from a to b. Equation (4.13) now takes the
form

Wba = Kb - Ka. 4.14

This result is the general statement of the work-energy theorem
which we met in restricted form in our discussion of one dimen-
sional motion.

The work AW done by a force F in a small displacement Ar is

AW = F • Ar = F cos 6 Ar = F\\ Ar,

where F\\ = F cos 6 is the component of F along the direction of
Ar. The component of F perpendicular to Ar does no work. For
a finite displacement from ra to rb, the work on the particle,

rb

/ F • dr, is the sum of the contributions AW = F\\ Ar from each
J a

segment of the path, in the limit where the size of each segment
approaches zero.
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In the work-energy theorem, Wba = Kb — Ka, Wba is the work
done on the particle by the total force F. If F is the sum of
several forces F = 2Flf we can write

Wba = £ (Wi)ba
i

— Kb — Ka,

where

is the work done by the ith force F*.
Our discussion so far has been restricted to the case of a single

particle. However, we showed in Chap. 3 that the center of mass
of an extended system moves according to the equation of motion

4.15

Integrating

4.16

"* dt

where V = R is the velocity of the center of mass.
Eq. (4.15) with respect to position gives

F ' dR =

where dR = V dt is the displacement of the center of mass in
time dt. Equation (4.16) is the work-energy theorem for the
translational motion of an extended system; in Chaps. 6 and 7 we
shall extend the ideas of work and kinetic energy to include rota-
tional motion. Note, however, that Eq. (4.16) holds regardless of
the rotational motion of the system.

Example 4.4 The Conical Pendulum

W

We discussed the motion of the conical pendulum in Example 2.8. Since
the mass moves with constant angular velocity co in a circle of constant
radius R, the kinetic energy of the mass, imRoo2, is constant. The work-
energy theorem then tells us that no net work is being done on the mass.

Furthermore, in the conical pendulum the string force and the weight
force separately do no work, since each of these forces is perpendicular
to the path of the particle, making the integrand of the work integral
zero.

It is important to realize that in the work integral JF • dr, the vector
dr is along the path of the particle. Since v = dr/dt, dr = v dt and dr
is always parallel to v.
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Example 4.5 Escape Velocity—the General Case

In Example 4.3 we discussed the one dimensional motion of a mass m
projected vertically upward from the earth. We found that if the initial
speed is greater than vQ = yflgRe, the mass will escape from the earth.
Suppose that we look at the problem once again, but now allow the mass
to be projected at angle a from the vertical.

The force on m, neglecting air resistance, is

_ GMem
2

where g = GMe/Re
2 is the acceleration due to gravity at the earth's sur-

face. We do not know the trajectory of the particle without solving the
problem in detail. However, any element of the path dr can be written

dr = dr r + r dd 8.

Hence
R 2

F • dr = -mg — r • (dr r + r dd 6)
r2

Re2,
= — mg — dr.

The work-energy theorem becomes

imv2 — imvo2 = —mgRe
2 I —

J Re T^__„,«., 0_
The escape velocity is the value of v0 for which r

find
°o, t> = 0. W e

= 1.1 X 104 m/s,

as before. The escape velocity is independent of the launch direction.
We have neglected the earth's rotation in our analysis. In the

absence of air resistance the projectile should be fired horizontally to
the east, since the rotational speed of the earth's surface is then added
to the launch velocity.

4.6 Applying the Work-energy Theorem

In the last section we derived the work-energy theorem

Wba = Kb- Ka 4.17
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and applied it to a few simple cases. In this section we shall use
it to tackle more complicated problems. However, a few com-
ments on the properties of the theorem are in order first.

To begin, we should emphasize that the work-energy theorem
is a mathematical consequence of Newton's second law; we have
introduced no new physical ideas. The work-energy theorem is
merely the statement that the change in kinetic energy is equal
to the net work done. This should not be confused with the
general law of conservation of energy, an independent physical
law which we shall discuss in Sec. 4.12.

Possibly you are troubled by the following problem: to apply
the work-energy theorem, we have to evaluate the line integral
for work1

Wba = ff-dr
J a

and the evaluation of this integral depends on knowing what path
the particle actually follows. We seem to need to know every-
thing about the motion even before we use the work-energy
theorem, and it is hard to see what use the theorem would be.

In the most general case, the work integral depends on the path
followed, and since we don't know the path without completely
solving the problem, the work-energy theorem is useless. There
are, fortunately, two special cases of considerable practical import-
ance. For many forces of interest, the work integral does not
depend on the particular path but only on the end points. Such
forces, which include most of the important forces in physics, are
called conservative forces. As we shall discuss later in this chapter,
the work-energy theorem can be put in a very simple form when
the forces are conservative.

The work-energy theorem is also useful in cases where the
path is known because the motion is constrained. By constrained
motion, we mean motion in which external constraints act to keep
the particle on a predetermined trajectory. The roller coaster is
a perfect example. Except in cases of calamity, the roller coaster
follows the track because it is held on by wheels both below and
above the track. There are many other examples of constrained
motion which come readily to mind—the conical pendulum is one
(here the constraint is that the length of the string is fixed)—but
all have one feature in common—the constraining force does no
work. To see this, note that the effect of the constraint force is

JThe C through the Integral sign reminds us that the integral is to be evaluated
along some specific curve.
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to assure that the direction of the velocity is always tangential to
the predetermined path. Hence, constraint forces change only
the direction of v and do no work.1

Example 4.6 The Inverted Pendulum

A pendulum consists of a light rigid rod of length I, pivoted at one end
and with mass m attached at the other end. The pendulum is released
from rest at angle <f>Ot as shown. What is the velocity of m when the
rod is at angle <f>?

The work-energy theorem gives

hnv(<t>)2 -

Since v0 = 0, we have

/ 2

ra

To evaluate W^^, the work done as the bob swings from <f>0 to <f>, we
examine the force diagram, dr lies along the circle of radius I. The
forces acting are gravity, directed down, and the force of the rod, N.
Since N lies along the radius, N • dr = 0, and N does no work. The work
done by gravity is

rag • dr = mgl cos ( 0 1 d<f>

= mgl sin 0 d<j>

where we have used \dr\ = I d<t>.

mgl sin 0 d<j>

= —mgl cos

= mgl (cos 0o — cos .

The speed at <j> is

' (COS 0o ~ COS 0

/
J 4>o

The maximum velocity is obtained by letting the pendulum fall from the
top, 0o = 0, to the bottom, 0 = TT:

1 We can prove that constraint forces do no work as follows. Suppose that the
constraint force Fconstraint changes the velocity by an amount Avc in time A£.
Avc is perpendicular to the instantaneous velocity v. The work done by Fconstraint
is Fconstraint * Ar = rn(Avc/At) • (v AO = mAvc • v = 0.
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This is the same speed attained by a mass falling through the same
vertical distance 21. However, the mass on the pendulum is not travel-
ing vertically at the bottom of its path, it is traveling horizontally.

If you doubt the utility of the work-energy theorem, try solving
the last example by integrating the equation of motion. However,
the example also illustrates one of the shortcomings of the method:
we found a simple solution for the speed of the mass at any point
on the circle—we have no information on when the mass gets
there. For instance, if the pendulum is released at <t>0 = 0, in
principle it balances there forever, never reaching the bottom.
Fortunately, in many problems we are not interested in time, and
even when time is important, the work-energy theorem provides
a valuable first step toward obtaining a complete solution.

Next we turn to the general problem of evaluating work done
by a known force over a given path, the problem of evaluating
line integrals. We start by looking at the case of a constant
force.

Example 4.7 Work Done by a Uniform Force

The case of a uniform force is particularly simple. Here is how to find
the work done by a force, F = ^on\ where Fo is a constant and n is a
unit vector in some direction, as the particle moves from ra to rb along
some arbitrary path. All the steps are put in to make the procedure
clear, but with any practice this problem can be solved by inspection.

Wba = t F-dr

/
Tb

Fon • dr
ra

= Fon • (fTb dr
J fa

A / fxb,yb,zb A fxb,yb,zb r f xb,yb,zb \
= Fon • (f / dx + j / dy + k dz)

\ J Xa,ya,Za J Xa,ya,Za J Xa,ya,Za /

= Foil • [?(Z6 - Xa) + UVb - Va) + H*b - Za)]

= Fon • (r6 - ro)

= Fo cos 6 \rb — ra\

For a constant force the work depends only on the net displacement,
T6 — ra, not on the path followed. This is not generally the case, but
it holds true for an important group of forces, including central forces,
as the next example shows.
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rd$ti

Example 4.8 Work Done by a Central Force

A central force is a radial force which depends only on the distance from
the origin. Let us find the work done by the central force F = f(r)r on
a particle which moves from ra to r6. For simplicity we shall consider
motion in a plane, for which dr = dr r + r dd 6. Then

b

F=/(r)r

J a
f - d r

f(r)r - (drr + rdd 0)

}f(r)dr.

The work is given by a simple one dimensional integral over the variable
r. Since 6 has disappeared from the problem, it should be obvious that
the work depends only on the initial and final radial distances [and, of
course, on the particular form of/(r)], not on the particular path.

For some forces, the work is different for different paths
between the initial and final points. One familiar example is
work done by the force of sliding friction. Here the force always
opposes the motion, so that the work done by friction in moving
through distance dS is dW = —fdS, where / is the magnitude
of the friction force. If we assume that / is constant, then the
work done by friction in going from ra to r6 along some path is

Wba = - frbfdS
JXa

= -/s.
where S is the total length of the path. The work is negative
because the force always retards the particle. Wba is never
smaller in magnitude than fS0, where So is the distance between
the two points, but by choosing a sufficiently devious route, S can
be made arbitrarily large.

(0,1)

(0,0)

Example 4.9 A Path-dependent Line Integral

Here is a second example of a path-dependent line integral. Let
F = A(xy\ + y2i)f and consider the integral from (0,0) to (0,1), first
along path 1 and then along path 2, as shown in the figure. The force
F has no physical significance, but the example illustrates the properties
of nonconservative forces. Since the segments of each path lie along a
coordinate axis, it is particularly simple to evaluate the integrals. For
path 1 we have

(1,0)
/ F . dr = f F . dr + f F • dr + f F • dr.
/I Ja Jb Jc
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Along segment a, dr — dx\, F • dr = Fxdx = Axy dx. Since y = 0

along the line of this integration, / F • dr = 0. Similarly, for path b,
Ja

f F-dr = A
Jb

while

/ . ' •

Thus

/ l F

for

dr

-dr

A
3

path

= A

= A

_ A

~ ?

rx = 0,y = l

/ x dx =

A

7

a:?/ d x

.1

7

Along path 2 we have

The work done by the applied force is different for the two paths.

Usually the path of a line integral does not lie conveniently
along the coordinate axes but along some arbitrary curve. The
following method of evaluating a line integral in such a case is
quite general; use it if all else fails.

For simplicity we again consider motion in a plane. Generaliza-
tion to three dimensions is straightforward.

F • dr along a specified path.
a

The path can be characterized by an equation of the form
g(x,y) = 0. For example, if the path is a unit circle about the
origin, then all points on the path obey x2 + y2 — 1 = 0.

We can characterize every point on the path by a parameter
s which in practical problems could be (for example) distance
along the path, or angle—anything just as long as each point on
the path is associated with a value of s so that we can write
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x = x(s), y = y(s). If we move along the path a short way, so
that s changes by the amount ds, then the change in x is
dx = (dx/ds)ds, and the change in y is dy = (dy/ds)ds. Since
both x and y are determined by s, so are Fx and Fy. Hence, we
can write F = Fx(s)\ + Fy(s)], and we have

dx = + Fy dy)

ds

We have reduced the problem to the more familiar problem of
evaluating a one dimensional definite integral. The calculation is
much simpler in practice than in theory. Here is an example.

Example 4.10 Parametric Evaluation of a Line Integral

Evaluate the line integral of F = A (.T3I + xy2}) from (x = 0, y = 0) to
(x = 0, y = 2R) along the semicircle shown.

The natural parameter to use here is 0, since as 0 varies from 0 to TT,
the radius vector sweeps out the semicircle. We have

x = R sin 6 dx = R cos 6 dd Fx = ;1#3 sin3 6

y = R(i - cos 6) dy = R sin 6 dd Fy = ,4#3 sin (9(1 - cos 0)2

<[ F-dr = A fW[(R sin 0)3# cos 0 + #3 sin 6 (1 - cos 0)2# sin 0] d0

= R*A f* [sin3 0 cos 0 + sin2 0(1 - cos 0)2] dd.

Evaluation of the integral is straightforward. If you are interested in
carrying it through, try substituting u = cos 0.

4.7 Potential Energy

We introduced the idea of a conservative force in the last section.
The work done by a conservative force on a particle as it moves
from one point to another depends only on the end points, not
on the path between them. Hence, for a conservative force,

/ F • dr = function of (r6) — function of (ra)
J Ta

or

F-dr = -U(rb)+ U(xa), 4.18

where U(r) is a function, defined by the above expression, known
as the potential energy function. (The reason for the sign con-



SEC. 4.7 POTENTIAL ENERGY 169

vention will be clear in a moment.) Note that we have not proven
that U(r) exists. However, we have already seen several cases
where the work is indeed path-independent, so that we can
assume that U exists for at least a few forces.

The work-energy theorem Wba = Kb — Ka now becomes

Wba = -Ub+ Ua

or, rearranging,

Ka+Ua = Kb+ Ub. 4.19

The left hand side of this equation, Ka + Uat depends on the
speed of the particle and its potential energy at ra; it makes no
reference to r6. Similarly, the right hand side depends on the
speed and potential energy at r6; it makes no reference to ro.
This can be true only if each side of the equation equals a con-
stant, since ra and rb are arbitrary and not specially chosen points.
Denoting this constant by E, we have

Ka + Ua = Kb + Ub = E. 4.20

E is called the total mechanical energy of the particle, or, some-
what less precisely, the total energy. We have shown that if the
force is conservative, the total energy is independent of the posi-
tion of the particle—it remains constant, or, in the language of
physics, the energy is conserved. Although the conservation of
mechanical energy is a derived law, which means that it has basi-
cally no new physical content, it presents such a different way of
looking at a physical process compared with applying Newton's
laws that we have what amounts to a completely new tool. Fur-
thermore, although the conservation of mechanical energy follows
directly from Newton's laws, it is an important key to understanding
the more general law of conservation of energy, which is indepen-
dent of Newton's laws and which vastly increases our understand-
ing of nature. When we discuss this in greater detail in Sec. 4.12,
we shall see that the conservation law for mechanical energy turns
out to be a special case of the more general law.

A peculiar property of energy is that the value of E is to a cer-
tain extent arbitrary; only changes in E have physical significance.
This comes about because the equation

Ub - Ua = -
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defines only the difference in potential energy between a and b
and not the potential energy itself. We could add a constant to
Ub and the same constant to Ua and still satisfy the defining
equation. However, since E == K + U, adding a constant to
U increases E by the same amount.

Illustrations of Potential Energy

We have already seen that for a uniform force or a central force
the work is path-independent. There are many other conserva-
tive forces, but by way of illustrating potential energy, here are
two examples involving these forces.

Example 4.11 Potential Energy of a Uniform Force Field

From Example 4.7, the work done by a uniform force is Wba = Fo • (rb — ra)
For instance, the force on a particle of mass m due to a uniform gravita
tional field is — mgk, so that if the particle moves from ro to r&, the change
in potential energy is

Ub- Ua = - j\-mg)dz
= mg(zb - za).

If we adopt the convention 17 = 0 at ground level where z — 0, then
U(h) = mgh, where h is the height above the ground. However, a
potential energy of the form mgh + C, where C is any constant, is just
as suitable.

In Example 4.1 we considered the problem of a mass projected upward
with a given initial velocity in a region of constant gravity. Here is how
to solve the same problem by using conservation of energy.

Suppose that a mass is projected upward with initial velocity v0 =
^oxi + Voyj + Vozk. Find the speed at height h.

Ko + Uo = K(h) + U(h)
imv0

2 + 0 = imv(h)2 + mgh

or

VVQ2 - 2gh.

Example 4.11 is trivial, since motion in a uniform force field is
easily found from F = ma. However, it does illustrate the ease
with which the energy method handles the problem. For instance,
motion in all three directions is handled at once, whereas Newton's
law involves one equation for each component of motion.
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Example 4.12 Potential Energy of an Inverse Square Force

Frequently we encounter central forces F = /(r)r, where /(r) is some
function of the distance to the origin. For instance, in the case of the
Coulomb electrostatic force, F oc (qiq2/r

2)r, where qi and q2 are the
charges of two interacting particles. The gravitational force between
two particles provides another example.

The potential energy of a particle in a central force F = f(r)r obeys

F-drub- ua= - frb\
= - fnf(r)dr.

For an inverse square force, f(r) = A/r2, and we have

Ub - Ua = - fTh-dr
Jra r

2

_A__A
n ra

To obtain the general potential energy function, we replace rb by the
radial variable r. Then

U{r) ^
r

The constant C has no physical meaning, since only changes in U are
significant. We are free to give C any value we like. A convenient
choice in this case is (7 = 0, which corresponds to taking £/(<*>) = 0.
With this convention we have

U(r) = - •
r

One of the most important forces in physics is the linear restor-
ing force, the spring force. To show that the spring force is con-
servative, consider a spring of equilibrium length r0 with one end
attached at the origin. If the spring is stretched to length r
along direction r, it exerts a force

F(r) = -k(r - ro)r.

Since the force is central, it is conservative. The potential energy
is given by

U(r) - U(a) = - I" (-k)(r - r0) dr
J a

-roy
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Hence

U(r) = ik(r - r0)
2 C.

Conventionally, we choose the potential energy to be zero at equi-
librium: U(r0) = 0. This gives

U(r) = ±k(r - 4.21

When several conservative forces act on a particle, the potential
energy is the sum of the potential energies for each force. In the
next example, two conservative forces act.

Example 4.13 Bead, Hoop, and Spring

A bead of mass m slides without friction on a vertical hoop of radius R.
The bead moves under the combined action of gravity and a spring
attached to the bottom of the hoop. For simplicity, we assume that the
equilibrium length of the spring is zero, so that the force due to the
spring is — kr, where r is the instantaneous length of the spring, as
shown.

The bead is released at the top of the hoop with negligible speed.
How fast is the bead moving at the bottom of the hoop?

At the top of the hoop, the gravitational potential energy of the bead
is mg(2R) and the potential energy due to the spring is %k(2R)2 = 2kR2.
Hence the initial potential energy is

Ui = 2mgR + 2kR2.

The potential energy at the bottom of the hoop is

Uf = 0.

Since all the forces are conservative, the mechanical energy is con-
stant and we have

Ki + Ui = Kf + Uf.

The initial kinetic energy is zero and we obtain

Kf = Ui - Uf

or

= 2mgR + 2kR2.

Hence

m
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4.8 What Potential Energy Tells Us about Force

If we are given a conservative force, it is a straightforward matter
to find the potential energy from the defining equation

' 6
Ub - Ua = - [ b F - d r ,

J a

where the integral is over any path from ra to r6. However, in
many cases it is easier to characterize a force by giving its poten-
tial energy function rather than by specifying each of its compo-
nents. In such cases we would like to use our knowledge of the
potential energy to determine what force is acting. The proce-
dure for finding the force turns out to be simple. In this sec-
tion we shall learn how to find the force from the potential energy
in a one dimensional system. The general case of three dimen-
sions can be treated by a straightforward extension of the method
developed here, but since it involves some new notation which is
more readily introduced in the next chapter, let us defer the three
dimensional case until then.

Suppose that we have a one dimensional system, such as a mass
on a spring, in which the force is F(x) and the potential energy is

Ub - Ua = - fXb F(x)dx.
J X

Consider the change in potential energy AU as the particle moves
from some point x t o x + Ax.

U(x + Ax) - U(x) E= AU

For Ax sufficiently small, F(x) can be considered constant over
the range of integration and we have

AU « -F(x)(x + Ax - x)
= -F(x)Ax

or

F(x) « - ~
Ax

In the limit Ax —> 0 we have

The result is quite reasonable: potential energy is the negative
integral of the force, and it follows that force is the negative deriv-
ative of the potential energy.
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/(I - cos0)

21T

Stability

The result F = —dU/dx is useful not only for computing the
force but also for visualizing the stability of a system from a dia-
gram of the potential energy. For instance, in the case of a har-
monic oscillator the potential energy U = kx2/2 is described by a
parabola.

At point a, dU/dx > 0 and so the force is negative. At point b,
dU/dx < 0 and the force is positive. At c, dU/dx = 0 and the
force is zero. The force is directed toward the origin no matter
which way the particle is displaced,-and the force vanishes only
when the particle is at the origin. The minimum of the potential
energy curve coincides with the equilibrium position of the system.
Evidently this is a stable equilibrium, since any displacement of
the system produces a force which tends to push the particle
toward its resting point.

Whenever dU/dx = 0, a system is in equilibrium. However,
if this occurs at a maximum of U, the equilibrium is not stable,
since a positive displacement produces a positive force, which
tends to increase the displacement, and a negative displacement
produces a negative force, which again causes the displacement
to become larger. A pendulum of length I supporting mass m
offers a good illustration of this. If we take the potential energy
to be zero at the bottom of its swing, we see that

U(d) = mgz
= mgHX — cos 0).

The pendulum is in equilibrium for 6 = 0 and 6 = TT. However,
although the pendulum will quite happily hang downward for
as long as you please, it will not hang vertically up for long.
dU/dx = 0 at 0 = TT, but U has a maximum there and the equi-
librium is not stable.

The sketch of a potential energy function makes the idea of
stability almost intuitively obvious. A minimum of a potential
energy curve is a point of stable equilibrium, and a maximum is
a point of unstable equilibrium. In more descriptive terms, the
system is stable at the bottom of a potential energy "valley," and
unstable at the top of a potential energy "hill."

Alternatively, we can use a simple mathematical test to deter-
mine whether or not an equilibrium point is stable. Let U(x) be
the potential energy function for a particle. As we have shown,
the force on the particle is F = —dU/dx, and the system is in
equilibrium where dU/dx = 0. Suppose that this occurs at some
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point x0. To test for stability we must determine whether U has
a minimum or a maximum at x0. To accomplish this we need to
examine d2U/dx2 at x0. If the second derivative is positive, the
equilibrium is stable; if it is negative, the system is unstable. If
d2U/dx2 = 0, we must look at higher derivatives. If all derivatives
vanish so that U is constant in a region about x0, the system is
said to be in a condition of neutral stability—no force results from
a displacement; the particle is effectively free.

1
1

1
1

*0

dx2

stable

U

\

dx2

unstable

u

H

d2u n

neutral

/cos(a-0)

L cos 0

Example 4.14 Energy and Stability—The Teeter Toy

The teeter toy consists of two identical weights which hang from a peg on
drooping arms, as shown. The arrangement is unexpectedly stable—
the toy can be spun or rocked with little danger of toppling over. We
can see why this is so by looking at its potential energy. For simplicity,
we shall consider only rocking motion in the vertical plane.

Let us evaluate the potential energy when the teeter toy is cocked at
angle 0, as shown in the sketch. If we take the zero of gravitational
potential at the pivot, we have

£7(0) = mg[L cos 0 - I cos (a + 0)] + mg[L cos 0 - I cos (a - 6)].

Using the identity cos (a + 6) = cos a cos 6 + sin a sin 6, we can rewrite
a s

17(0) = 2mg cos 0(L - I cos a).

Equilibrium occurs when

— = — 2mg sin 0(L — I cos a)
dB

= n.

The solution is 0 = 0, as we expect from symmetry. (We reject the solu-
tion 0 = 7T on the grounds that 0 must be limited to values less than
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I / cos a

7r/2.) TO investigate the stability of the equilibrium position, we must
examine the second derivative of the potential energy. We have

d2U
= — 2mg cos 6(L — I cos a).

do2

At equilibrium,

d2U

0 = 0
—2mg(L — I cos a).

For the second derivative to be positive, we require L — I cos a < 0, or

L < I cos a.

In order for the teeter toy to be stable, the weights must hang below the
pivot.

4.9 Energy Diagrams

We can often find the most interesting features of the motion of
a one dimensional system by using an energy diagram, in which the
total energy E and the potential energy U are plotted as functions
of position. The kinetic energy K = E — U is easily found by
inspection. Since kinetic energy can never be negative, the
motion of the system is constrained to regions where U < E.

Here is the energy diagram for a harmonic oscillator. The
potential energy U = kx2/2 is a parabola centered at the origin.
Since the total energy is constant for a conservative system, E is
represented by a horizontal straight line. Motion is limited to the
shaded region where E > U; the limits of the motion, xi and x2

in the sketch, are sometimes called the turning points.
Here is what the diagram tells us. The kinetic energy,

K = E — U, is greatest at the origin. As the particle flies past
the origin in either direction, it is slowed by the spring and comes
to a complete rest at one of the turning points xi, x2. The par-
ticle then moves toward the origin with increasing kinetic energy,
and the cycle is repeated.

The harmonic oscillator provides a good example of bounded
motion. As E increases, the turning points move farther and
farther off, but the particle can never move away freely. If E is
decreased, the amplitude of motion decreases, until finally for
E = 0 the particle lies at rest at x = 0.

Quite a different behavior occurs if U does not increase indefi-
nitely with distance. For instance, consider the case of a particle
constrained to a radial line and acted on by a repulsive inverse
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square law force Ar/r2. Here U = A/r, where A is positive.
There is a distance of closest approach, rmin, as shown in the dia-
gram, but the motion is not bounded for large r since U decreases
with distance. If the particle is shot toward the origin, it gradually
loses kinetic energy until it comes momentarily to rest at rmin.
The motion then reverses and the particle moves out toward
infinity. The final and initial speeds at any point are identical;
the collision merely reverses the velocity.

With some potentials, either bounded or unbounded motion can
occur depending upon the energy. For instance, consider the
interaction between two atoms. At large separations, the atoms
attract each other weakly with the van der Waals force, which
varies as 1/r7. As the atoms approach, the electron clouds begin
to overlap, producing strong forces. In this intermediate region
the force is either attractive or repulsive depending on the details
of the electron configuration. If the force is attractive, the poten-
tial energy decreases with decreasing r. At very short distances
the atoms always repel each other strongly, so that U increases
rapidly as r becomes small.

The energy diagram for a typical attractive two atom system is
shown in the sketch. For positive energy, E > 0, the motion is
unbounded, and the atoms are free to fly apart. As the diagram
indicates, the distance of closest approach, rmin, does not change
appreciably as E is increased. The steep slope of the potential
energy curve at small r means that the atoms behave like hard
spheres—rmin is not sensitive to the energy of collision.

The situation is quite different if E is negative. Then the motion
is bounded for both small and large separations; the atoms never
approach closer than ra or move farther apart than rb. A bound
system of two atoms is, of course, a molecule, and our sketch rep-
resents a typical diatomic molecule energy diagram. If two atoms
collide with positive energy, they cannot form a molecule unless
some means is available for losing enough energy to make E nega-
tive. In general, a third body is necessary to carry off the excess
energy. Sometimes the third body is a surface, which is the rea-
son surface catalysts are used to speed certain reactions. For
instance, atomic hydrogen is quite stable in the gas phase even
though the hydrogen molecule is tightly bound. However, if a
piece of platinum is inserted in the hydrogen, the atoms imme-
diately join to form molecules. What happens is that hydrogen
atoms tightly adhere to the surface of the platinum, and if a colli-
sion occurs between two atoms on the surface, the excess energy
is released to the surface, and the molecule, which is not strongly
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attracted to the surface, leaves. The energy delivered to the sur-
face is so large that the platinum glows brightly. A third atom
can also carry off the excess energy, but for this to happen the
two atoms must collide when a third atom is nearby. This is a rare
event at low pressures, but it becomes increasingly important at
higher pressures. Another possibility is for the two atoms to lose
energy by the emission of light. However, this occurs so rarely
that it is usually not important.

4.10 Small Oscillations in a Bound System

The interatomic potential we discussed in the last section illus-
trates an important feature of all bound systems; at equilibrium
the potential energy has a minimum. As a result, nearly every
bound system oscillates like a harmonic oscillator if it is slightly
perturbed from its equilibrium position. This is suggested by the
appearance of the energy diagram near the minimum—U has
the parabolic shape of a harmonic oscillator potential. If the total
energy is low enough so that the motion is restricted to the region
where the curve is nearly parabolic, as illustrated in the sketch,
the system must behave like a harmonic oscillator. It is not diffi-
cult to prove this.

As we have discussed in Note 1.1, any "well behaved" function
f(x) can be expanded in a Taylor's series about a point x0. Thus

= /(so) + (x - xo)f'(xo) + Ux - xo)T(xo) + • ' .

Suppose that we expand U(r) about r0, the position of the poten-
tial minimum. Then

dU
U{r) = U(r0) + (r - r0) —

dr

1 d2U

However, since U is a minimum at r0, (dU/dr) |ro = 0. Further-
more, for sufficiently small displacements, we can neglect the
terms beyond the third in the power series. In this case,

1 d2U
U(r) = U(r0) + - (r - r0)

2 —

This is the potential energy of a harmonic oscillator,

kx2

U(x) = constant H
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We can even identify the effective spring constant:

d2U
k =

dr2 4.23

Example 4.15 Molecular Vibrations

Suppose that two atoms of masses mi and m2 are bound together in a
molecule with energy so low that their separation is always close to the
equilibrium value r0. With the parabola approximation, the effective
spring constant is k = (d2U/dr2) |ro. How can we find the vibration
frequency of the molecule?

Consider the two atoms connected by a spring of equilibrium length
r0 and spring constant k, as shown below. The equations of motion are

rriifi = k(r — r0)

m2r2 = -k(r - r0),

where r = r2 — rx is the instantaneous separation of the atoms. We
can find the equation of motion for r by dividing the first equation by ni\
and the second by m2f and subtracting. The result is

r2 — ri = f = — k
W + mj (T ~ ^

or

f = (r - r0),

where ju = mim2/(mi + m2). p. has the dimension of mass and is called
the reduced mass.

By analogy with the harmonic oscillator equation x = —(k/m)(x — x0)
for which the frequency of oscillation is co = \/k/m, the vibrational fre-
quency of the molecule is

This vibrational motion, characteristic of all molecules, can be identified
by the light the molecule radiates. The vibrational frequencies typically
lie in the near infrared (3 X 1013 Hz), and by measuring the frequency
we can find the value of d2U/dr2 at the potential energy minimum. For
the HCI molecule, the effective spring constant turns out to be 5 X 105

dynes/cm = 500 N/m (roughly 3 Ib/in). For large amplitudes the higher
order terms in the Taylor's series start to play a role, and these lead to
slight departures of the oscillator from its ideal behavior. The slight
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v=lO

/ ( I - cos 0)

"anharmonicities" introduced by this give further details on the shape
of the potential energy curve.

Since all bound systems have a potential energy minimum at
equilibrium, we naturally expect that all bound systems behave
like harmonic oscillators for small displacements (unless the mini-
mum is so flat that the second derivative vanishes there also).
The harmonic oscillator approximation therefore has a wide range
of applicability, even down to internal motions in nuclei.

Once we have identified the kinetic and potential energies of a
bound system, we can find the frequency of small oscillations by
inspection. For the elementary case of a mass on a spring we
have

U = \hx2

K = imx2

and

Ik

In many problems, however, it is more natural to write the ener-
gies in terms of a variable other than linear displacement. For
instance, the energies of a pendulum are

U = mgl(l — cos 0) « imgld2

K = iml2d2.

More generally, the energies may have the form

U = \Aq2 + constant

K = ±Bq2,
4.24

where q represents a variable appropriate to the problem. By
analogy with the mass on a spring, we expect that the frequency
of motion of the oscillator is

4.25

To show explicitly that any system whose energy has the form

of Eq. (4.24) oscillates harmonically with a frequency y/A/B, note

that the total energy of the system is

E = K + U
= iBq2 + ±Aq2 + constant.
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Since the system is conservative, E is constant. Differentiating
the energy equation with respect to time gives

dE
— = Bqq + Aqq

= 0

or

Hence q undergoes harmonic motion with frequency V A/B.

Example 4.16 Small Oscillations

In Example 4.14 we determined the stability criterion for a teeter toy. In
this example we shall find the period of oscillation of the toy when it is
rocking from side to side.

From Example 4.14, the potential energy of the teeter toy is

U(6) = - A cos 0,

where A = 2mg(l cos a — L). For stability, A > 0. If we expand U(d)
about 0 = 0, we have

Thus,since cos 6 ~ 1 - 02/2 +

U(6) = -A + iA6\

To find the kinetic energy, let s be the distance of each mass from the
pivot, as shown in the sketch. If the toy rocks with angular speed 0, the
speed of each mass is 50, and the total kinetic energy is

K --

where B = 2ms2.
Hence the frequency of oscillation is

lg(l cos a — L)
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We found in Example 4.14 that for stability I cos a — L > 0. Equation
(1) shows that as I cos a — L approaches zero, co approaches zero, and
the period of oscillation becomes infinite. In the limit I cos a — L = 0,
the system is in neutral equilibrium, and if I cos a — L < 0, the system
becomes unstable. Thus, a low frequency of oscillation is associated
with the system operating near the threshold of stability. This is a
general property of stable systems, because a low frequency of oscillation
corresponds to a weak restoring force. For instance, a ship rolled by a
wave oscillates about equilibrium. For comfort the period of the roll
should be long. This can be accomplished by designing the hull so that
its center of gravity is as high as possible consistent with stability. Low-
ering the center of gravity makes the system "stiffen" The roll becomes
quicker and less comfortable, but the ship becomes intrinsically more
stable.

4.11 Nonconservative Forces

We have stressed conservative forces and potential energy in this
chapter because they play an important role in physics. However,
in many physical processes nonconservative forces like friction are
present. Let's see how to extend the work-energy theorem to
include nonconservative forces.

Often both conservative and nonconservative forces act on the
same system. For instance, an object falling through the air
experiences the conservative gravitational force and the noncon-
servative force of air friction. We can write the total force F as

F = Fc + Fnc

where Fc and Fnc are the conservative and the nonconservative
forces respectively. Since the work-energy theorem is true
whether or not the forces are conservative, the total work done
by F as the particle moves from a to b is

TF&atotal = £ F • dx

= P Fc - dx + P Fnc • dx
Ja Ja

= - u h + ua + wba™.
Here U is the potential energy associated with the conservative
force and Wba

nc is the work done by the nonconservative force.
The work-energy theorem, TF6a

total = Kb — Ka, now has the form

-Ub+ Ua + Wba™ = Kb- Ka
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or

Kb+Ub- Ua) = 4.26

If we define the total mechanical energy by E = K + U, as
before, then E is no longer a constant but instead depends on
the state of the system. We have

Eh-Ea = ' b a 4.27

This result is a generalization of the statement of conservation of
mechanical energy which we discussed in Sec. 4.7. If noncon-
servative forces do no work, Eb = Ea, and mechanical energy is
conserved. However, this is a special case, since nonconserva-
tive forces are often present. Nevertheless, energy methods
continue to be useful; we simply must be careful not to omit the
work done by the nonconserva tive forces, Wba

no. Here is an
example.

Example 4.17 Block Sliding down Inclined Plane

A block of mass M slides down a plane of angle 6. The problem is to
find the speed of the block after it has descended through height h,
assuming that it starts from rest and that the coefficient of friction n is
constant.

Initially the block is at rest at height h\ finally the block is moving with
speed v at height 0. Hence

N
dr

\
N

\

W=Mg

Ua = Mgh Ub = 0

Kb = i
Eh =Ea = Mgh

The nonconservative force is / = pN = \xMg cos 6. Hence, the non-
conservative work is

WiS* = [bf-dr
Ja

= -fs,
where s is the distance the block slides. The negative sign arises because
the direction of f is always opposite to the displacement, so that f • dr =
—/ dr. Using s = h/s\n d, we have

Wba
no = —y.Mg cos 6 —

sin 6

= — JJL cot 6 Mgh.
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The energy equation Eb — Ea = Wbanc becomes

iMv2 - Mgh = -fi cot 0 Mgh,

which gives

v = [2(1 - /xcot 6)gh]K

Since all the forces acting on the block are constant, the expression
for v could easily be found by applying our results for motion under uni-
form acceleration; the energy method does not represent much of a
shortcut here. The power of the energy method lies in its generality.
For instance, suppose that the coefficient of friction varies along the
surface so that the friction force is / = ii(x)Mg cos 6. The work done
by friction is

Wha
nc = — Mg cos 6 / v(x)dx,

Ja

and the final speed is easily found. In contrast, there is no simple way
to find the speed by integrating the acceleration with respect to time.

4.12 The General Law of Conservation of Energy

As far as we know, the basic forces of nature, such as the force
of gravity and the forces of electric and magnetic interactions, are
conservative. This leads to a puzzle; if fundamental forces are
conservative, how can nonconservative forces arise? The resolu-
tion of this problem lies in the point of view we adopt in describing
a physical system, and in our willingness to broaden the concept
of energy.

Consider friction, the most familiar nonconservative force.
Mechanical energy is lost by friction when a block slides across a
table, but something else occurs: the block and the table get
warmer. However, there was no reference to temperature in
our development of the concept of mechanical energy; a block of
mass M moving with speed v has kinetic energy ^Mv2, whether
the block is hot or cold. The fact that a block sliding across a
table warms up does not affect our conclusion that mechanical
energy is lost. Nevertheless, if we look carefully, we find that the
heating of the system bears a definite relation to the energy dis-
sipated. The British physicist James Prescott Joule was the
first to appreciate that heat itself represents a form of energy.
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By a series of meticulous experiments on the heating of water by
a paddle wheel driven by a falling weight, he showed that the loss
of mechanical energy by friction is accompanied by the appearance
of an equivalent amount of heat. Joule concluded that heat must
be a form of energy and that the sum of the mechanical energy
and the heat energy of a system is conserved.

We now have a more detailed picture of heat energy than was
available to Joule. We know that solids are composed of atoms
held together by strong interatomic forces. Each atom can oscil-
late about its equilibrium position and has mechanical energy in
the form of kinetic and potential energies. As the solid is heated,
the amplitude of oscillation increases and the average energy of
each atom grows larger. The heat energy of a solid is the mechan-
ical energy of the random vibrations of the atoms.

There is a fundamental difference between mechanical energy
on the atomic level and that on the level of everyday events. The
atomic vibrations in a solid are random; at any instant there are
atoms moving in all possible directions, and the center of mass of
the block has no tendency to move on the average. Kinetic energy
of the block represents a collective motion; when the block moves
with velocity v, each atom has, on the average, the same velocity v.

Mechanical energy is turned into heat energy by friction, but
the reverse process is never observed. No one has ever seen a
hot block at rest on a table suddenly cool off and start moving,
although this would not violate conservation of energy. The
reason is that collective motion can easily become randomized.
For instance, when a block hits an obstacle, the collective trans-
lational motion ceases and, under the impact, the atoms start to
jitter more violently. Kinetic energy has been transformed to
heat energy. The reverse process where the random motion of
the atoms suddenly turns to collective motion is so improbable
that for all practical purposes it never occurs. It is for this reason
that we can distinguish between the heat energy and the mechan-
ical energy of a chunk of matter even though on the atomic scale
the distinction vanishes.

We now recognize that in addition to mechanical energy and
heat there are many other forms of energy. These include the
radiant energy of light, the energy of nuclear forces, and, as we
shall discuss in Chap. 13, the energy associated with mass. It is
apparent that the concept of energy is much wider than the simple
idea of kinetic and potential energy of a mechanical system. We
believe that the total energy of a system is conserved if all forms
of energy are taken into account.
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4.13 Power

Power is the time rate of doing work. If a force F acts on a body
which undergoes a displacement dr, the work is dW = F • dx and
the power delivered by the force is

p = ^ = p dr
dt dt

= Fv.

The unit of power in the SI system is the watt (W).

1 W = 1 J/s.

In the cgs system, the unit of power is the erg/s = 10~7 W; it has
no special name. The unit of power in the English system is the
horsepower (hp). The horsepower is most commonly defined as
550 ft lb/s, but slightly different definitions are sometimes encoun-
tered. The relation between the horsepower and the watt is

1 hp « 746 W.

This is a discouraging number for builders of electric cars; the
average power obtainable from an ordinary automobile storage
battery is only about 350 W.

The power rating of an engine is a useful indicator of its per-
formance. For instance, a small motor with a system of reduction
gears can raise a large mass M any given height, but the process
will take a long time; the average power delivered is low. The
power required is Mgv, where v is the weight's upward speed.
To raise the mass rapidly the power must be large.

A human being in good condition can develop between i to 1 hp
for 30 s or so, for example while running upstairs. Over a period
of 8 hours (h), however, a husky man can do work only at the rate
of about 0.2 hp = 150 W. The total work done in 8 h is then
(150)(8)(3,600) = 4.3 X 106 J « 1,000 kcal. The kilocalorie, approx-
imately equal to 4,200 J, is often used to express the energy avail-
able from food. A normally active person requires 2,000 to 3,000
kcal/d. (In dietetic work the kilocalorie is sometimes called the
'large" calorie, but more often simply the calorie.)

The power production of modern industrialized nations corre-
sponds to several thousand watts per person (United States: 6,000
W per person; India: 300 W per person). The energy comes pri-
marily from the burning of fossil fuels, which are the chief source
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of energy at present. In principle, we could use the sun's energy
directly. When the sun is overhead, it supplies approximately
1,000 W/m2 (~ 1 hp/yd2) to the earth's surface. Unfortunately,
present solar cells are costly and inefficient, and there is no
economical way of storing the energy for later use.

4.14 Conservation Laws and Particle Collisions

Much of our knowledge of atoms, nuclei, and elementary particles
has come from scattering experiments. Perhaps the most dra-
matic of these was the experiment performed in 1911 by Ernest
Rutherford in which alpha particles (doubly ionized helium atoms)
were scattered from atoms of gold in a thin foil. By studying how
the number of scattered alpha particles varied with the deflection
angle, Rutherford was led to the nuclear model of the atom. The
techniques of experimental physics have advanced considerably
since Rutherford's time. A high energy particle accelerator sev-
eral miles long may appear to have little in common with Ruther-
ford's tabletop apparatus, but its purpose is the same—to discover
the interaction forces between particles by studying how they
scatter.

Finding the interaction force from a scattering experiment is a
difficult task. Furthermore, the detailed description of collisions
on the atomic scale generally requires the use of quantum
mechanics. Nevertheless, there are constraints on the motion
arising from the conservation laws of momentum and energy
which are so strong that they are solely responsible for many of
the features of scattering. Since the conservation laws can be
applied without knowing the interactions, they play a vital part in
the analysis of collision phenomena.

In this section we shall see how to apply the conservation laws
of momentum and energy to scattering experiments. No new
physical principles are involved; the discussion is intended to
illustrate ideas we have already introduced.

Collisions and Conservation Laws

The drawings below show three stages during the collision of two
particles. In (a), long before the collision, each particle is effec-
tively free, since the interaction forces are generally important
only at very small separations. As the particles approach, (6),
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the momentum and energy of each particle change due to the
interaction forces. Finally, long after the collision, (c), the par-
ticles are again free and move along straight lines with new direc-
tions and velocities. Experimentally, we usually know the initial
velocities Vi and v2; often one particle is initially at rest in a target
and is bombarded by particles of known energy. The experiment
might consist of measuring the final velocities vi and v'2 with suit-
able particle detectors.

(a)

Since external forces are usually negligible, the total momentum
is conserved and we have

Pi = P/.

For a two body collision, this becomes

+ m2v2 = raX + m2v
r
2.

4.28

4.29

Equation (4.29) is equivalent to three scalar equations. We have,
however, six unknowns, the components of vi and V2. The energy
equation provides an additional relation between the velocities, as
we now show.

Before

After

Elastic and Inelastic Collisions

Consider a collision on a linear air track between two riders of
equal mass which interact via good coil springs. Suppose that
initially rider 1 has speed v as shown and rider 2 is at rest. After
the collision, 1 is at rest and 2 moves to the right with speed v.
It is clear that momentum has been conserved and that the total
kinetic energy of the two bodies, Mv2/2, is the same before and
after the collision. A collision in which the total kinetic energy is
unchanged is called an elastic collision. A collision is elastic if the
interaction forces are conservative, like the spring force in our
example.
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Before

After

After

As a second experiment, take the same two riders and replace
the springs by lumps of sticky putty. Let 2 be initially at rest.
After the collision, the riders stick together and move off with
speed v'. By conservation of momentum, Mv = 2Mv', so that
v' — v/2. The initial kinetic energy of the system is Mv2/2, but
the final kinetic energy is (2M)v'2/2 = Mv2/b. Evidently in this
collision the kinetic energy is only half as much after the collision
as before. The kinetic energy has changed because the inter-
action forces were nonconservative. Part of the energy of the
collective motion was transformed to random heat energy in the
putty during the collision. A collision in which the total kinetic
energy is not conserved is called an inelastic collision.

Although the total energy of the system is always conserved in
collisions, part of the kinetic energy may be converted to some
other form. To take this into account, we write the conservation
of energy equation for collisions as

Ki = Kf + Q, 4.30

where Q = Ki — Kf is the amount of kinetic energy converted
to another form. For a two body collision, Eq. (4.30) becomes

+ + \m2v2 + Q- 4.31

In most collisions on the everyday scale, kinetic energy is lost and
Q is positive. However, Q can be negative if internal energy of
the system is converted to kinetic energy in the collision. Such
collisions are sometimes called superelastic, and they are important
in atomic and nuclear physics. Superelastic collisions are rarely
encountered in the everyday world, but one example would be the
collision of two cocked mousetraps.

Collisions in One Dimension

If we have a two body collision in which the particles are con-
strained to move along a straight line, the conservation laws, Eqs.
(4.29) and (4.31), completely determine the final velocities, regard-
less of the nature of the interaction forces. With the velocities
shown in the sketch, the conservation laws give

Momentum:

m2v2. 4.32a

Energy:

Q. 4.326
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These equations can be solved for v[ and v2 in terms of mi, m2i

vi, v2, and Q. The next example illustrates the process.

Example 4.18 Elastic Collision of Two Balls

Consider the one dimensional elastic collision of two balls of masses mi
and m2, with m2 = 3mi. Suppose that the balls have equal and opposite

Before velocities v before the collision; the problem is to find the final velocities.
The conservation laws yield

After iniiv2 + i(3mi)v2 = \m\p'x +

We can eliminate v[ using Eq. (1):

v[ = — 2v — 3v2.

Inserting this in Eq. (2) gives

4f2 = (—2v — Zv2)
2 + 3v2

2

= 4v2 + 12^2 + 12t>22

or

0 =

Equation (4) has two solutions: vf
2 = — #and ^ = 0- The corresponding

values of v[ can be found from Eq. (3).

Solution 1:

v'i = v

v2 = —v.

Solution 2:

v[ = -2v

v2 = 0.

We recognize that solution 1 simply restates the initial conditions: we
always obtain such a "solut ion" in this type of problem because the initial
velocities evidently satisfy the conservation law equations.

Solution 2 is the interesting one. It shows that after the collision, m\
is moving to the left with twice its original speed and the heavier ball is
at rest.

Collisions and Center of Mass Coordinates

It is almost always simpler to treat three dimensional collision
problems in the center of mass (C) coordinate system than in the
laboratory (L) system.
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Consider two particles of masses mx and m2f and velocities
and v2. The center of mass velocity is

V =
m2v2

-f- m 2

As shown in the velocity diagram at left, V lies on the line joining
Vi and v2.

The velocities in the C system are

- v2),

- v2).

Vic and v2c lie back to back along the relative velocity vector
V = Vi - V2.

The momenta in the C system are

Pic =

mi + m2
(Vi - V2)

P2c m2v2 c

mi + m2

= - / i V .

(Vi - V2)

Here /i = mim2/(mi + m2) is the reduced mass of the system.
We encountered the reduced mass for the first time in Example
4.15. As we shall see in Chap. 9, it is the natural unit of mass in
a two particle system. The total momentum in the C system is
zero, as we expect.

The total momentum in the L system is

+ m2v2 = (mi + m2)V
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"2c

Y

and since total momentum is conserved in any collision, V is con-
stant. We can use this result to help visualize the velocity vectors
before and after the collision.

Sketch (a) shows the trajectories and velocities of two colliding
particles. In sketch (6) we show the initial velocities in the L and
C systems. All the vectors lie in the same plane. vlc and v2c

must be back to back since the total momentum in the C system
is zero. After the collision, sketch (c), the velocities in the C sys-
tem are again back to back. This sketch also shows the final
velocities in the lab system. Note that the plane of sketch c is
not necessarily the plane of sketch a. Evidently the geometrical
relation between initial and final velocities in the L system is quite
complicated. Fortunately, the situation in the C system is much
simpler. The initial and final velocities in the C system deter-
mine a plane known as the plane of scattering. Each particle is
deflected through the same scattering angle 0 in this plane. The
interaction force must be known in order to calculate 0 , or con-
versely, by measuring the deflection we can learn about the inter-
action force. However, we shall defer these considerations and
simply assume that the interaction has caused some deflection in
the C system.

An important simplification occurs if the collision is elastic.
Conservation of energy applied to the C system gives, for elastic
collisions,

V2c ^mi^ ic 2 -f~ iwi2v2c
2 =

Since momentum is zero in the C system, we have

mxvu — m2v2c = 0.

Eliminating v2c and v2c from the energy equation gives

mi2\ / mi2\ ,,
m i H I V\c = i I m i H I v{

M2/ \ wi2/

or

vu = vie-

Similarly,

v2c = v2c.

In an elastic collision, the speed of each particle in the C system is
the same before and after the collision. Thus, the velocity vectors
simply rotate in the scattering plane.
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In many experiments, one of the particles, say ???2, is initially at
rest in the laboratory. In this case

"2c

V = -

and

Vlc =

ii + m2

Vi - V

m2
Vi

v 2 c = - V

=0
0 V' V °2

vV2c^~

Vi.
mi + m2

The sketches show vx and v2 before and after the collision in
the C and L systems. 0i and 02 are the laboratory angles of the
trajectories of the two particles after the collision. The velocity
diagrams can be used to relate 0i and 02 to the scattering angle
0 .

Example 4.19 Limitations on Laboratory Scattering Angle

Consider the elastic scattering of a particle of mass mi and velocity Vi
from a second particle of mass m2 at rest. The scattering angle 0 in
the C system is unrestricted, but the conservation laws impose limitations
on the laboratory angles, as we shall show.

The center of mass velocity has magnitude

1

and is parallel to Vi. The initial velocities in the C system are

nil +

v2c = ~
mi + m2

Suppose mi is scattered through angle 0 in the C system.
From the velocity diagram we see that the laboratory scattering angle

of the Incident particle is given by

tan 0i
»icsin 0

V + v'u cos 0



194 WORK AND ENERGY

Since the scattering is elastic, v'lc = vu. Hence

vlc sin O
tan 0!

V + vu cos ©
sin 0

(V/vu) + cos O

From Eqs. (1) and (2), V/vu = rai/m2. Therefore

tan 6i
sin 0

(rai/m2) + cos 0

The scattering angle 0 depends on the details of the interaction, but in
general it can assume any value. If mi < ra2, it follows from Eq. (3) or
the geometric construction in sketch (a) that 0i is unrestricted. How-
ever, the situation is quite different if rrii > m2. In this case 0i is never
greater than a certain angle 0i,max. As sketch (b) shows, the maximum
value of 0] occurs when vj and v[c are both perpendicular. In this case
sin 0i,max = Vu/V = m2/wii. If mx » m2, 0i,max ~ m2/»ii and the maxi-
mum scattering angle approaches zero.

Increasing 0

(a)

Physically, a light particle at rest cannot appreciably deflect a massive
particle. The incident particle tends to continue in its forward direction
no matter how the light target particle recoils.

Problems 4.1 A small block of mass m starts from rest and slides along a friction-
less loop-the-loop as shown in the left-hand figure on the top of the next
page. What should be the initial height z, so that m pushes against
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the top of the track (at a) with a force equal to its weight?
Ans. z = 3R

V////////////////^

4.2 A block of mass M slides along a horizontal table with speed VQ.
At x = 0 it hits a spring with spring constant k and begins to experience
a friction force (see figure above right). The coefficient of friction is
variable and is given by /JL = bx, where b is a constant. Find the loss
in mechanical energy when the block has first come momentarily to rest.

h ft

M

Ja,

4.3 A simple way to measure the speed of a bullet is with a ballistic
pendulum. As illustrated, this consists of a wooden block of mass M
into which the bullet is shot. The block is suspended from cables of
length I, and the impact of the bullet causes it to swing through a maxi-
mum angle <f>, as shown. The initial speed of the bullet is v, and its
mass is m.

a. How fast is the block moving immediately after the bullet comes to
rest? (Assume that this happens quickly.)

b. Show how to find the velocity of the bullet by measuring m, M, I,
a n d <f>.

Ans. (b) v = [(m + M)/m] \Z2gl(l - cos <f>)

4.4 A small cube of mass m slides down a circular path of radius R cut
into a large block of mass M, as shown at left. M rests on a table, and
both blocks move without friction. The blocks are initially at rest, and
m starts from the top of the path.

Find the velocity v of the cube as it leaves the block.

Ans. clue. If m = M, v = 'VgR

4.5 Mass m whirls on a frictionless table, held to circular motion by a
string which passes through a hole in the table. The string is slowly
pulled through the hole so that the radius of the circle changes from Ji
to l2. Show that the work done in pulling the string equals the increase
in kinetic energy of the mass.
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M

7/////////////////W/M^ \
W///.

4.6 A small block slides from rest from the top of a frictionless sphere
of radius R (see above left). How far below the top x does it lose con-
tact with the sphere? The sphere does not move. Ans. R/3

4.7 A ring of mass M hangs from a thread, and two beads of mass m
slide on it without friction (see above right). The beads are released
simultaneously from the top of the ring and slide down opposite sides.
Show that the ring will start to rise if m > 37I//2, and find the angle at
which this occurs. Ans. clue. If M = 0, 6 = arccos §

4.8 The block shown in the drawing is acted on by a spring with spring
constant k and a weak friction force of constant magnitude / . The block
is pulled distance x0 from equilibrium and-released. It oscillates many
times and eventually comes to rest.

a. Show that the decrease of amplitude is the same for each cycle of
oscillation.

b. Find the number of cycles n the mass oscillates before coming to
rest. Ans. n = i[(kxo/f) - 1] ~ /bo/4/

4.9 A simple and very violent chemical reaction is H + H —» H2 + 5 eV.
(1 eV = 1.6 X 10~19 J, a healthy amount of energy on the atomic scale.)
However, when hydrogen atoms collide in free space they simply bounce
apart! The reason is that it is impossible to satisfy the laws of conserva-
tion of momentum and conservation of energy in a simple two body colli-
sion which releases energy. Can you prove this? You might start by
writing the statements of conservation of momentum and energy. (Be
sure to include the energy of reaction in the energy equation, and get
the sign right.) By eliminating the final momentum of the molecule
from the pair of equations, you should be able to show that the initial
momenta would have to satisfy an impossible condition.

4.10 A block of mass M on a horizontal frictionless table is connected
to a spring (spring constant k), as shown.

The block is set in motion so that it oscillates about its equilibrium
point with a certain amplitude Ao. The period of motion is To =
2wVW/k.



PROBLEMS 197
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a. A lump of sticky putty of mass m is dropped onto the block. The
putty sticks without bouncing. The putty hits M at the instant when the
velocity of M is zero. Find

(1) The new period
(2) The new amplitude
(3) The change in the mechanical energy of the system

b. Repeat part a, but this time assume that the sticky putty hits M
at the instant when M has its maximum velocity.

4.11 A chain of mass M and length I is suspended vertically with its
lowest end touching a scale. The chain is released and falls onto the
scale.

What is the reading of the scale when a length of chain, x, has fallen?
(Neglect the size of individual links.)

Ans. clue. The maximum reading is 3Mg

4.12 During the Second World War the Russians, lacking sufficient para-
chutes for airborne operations, occasionally dropped soldiers inside bales
of hay onto snow. The human body can survive an average pressure on
impact of 30 Ib/ in2.

Suppose that the lead plane drops a dummy bale equal in weight to a
loaded one from an altitude of 150 ft, and that the pilot observes that it
sinks about 2 ft into the snow. If the weight of an average soldier is
144 Ib and his effective area is 5 ft2, is it safe to drop the men?

4.13 A commonly used potential energy function to describe the inter-
action between two atoms is the Lennard-Jones 6,12 potential

-o-

M

a. Show that the radius at the potential minimum is r0, and that the
depth of the potential well is e.

b. Find the frequency of small oscillations about equilibrium for 2

identical atoms of mass m bound to each other by the Lennard-Jones

interaction.

Ans. co = 12 \Ze/r0
2m

4.14 A bead of mass m slides without friction on a smooth rod along the
x axis. The rod is equidistant between two spheres of mass M. The
spheres are located at x = 0, y = ±a as shown, and attract the bead
gravitationally.

a. Find the potential energy of the bead.

b. The bead is released at x = 3a with velocity v0 toward the origin.
Find the speed as it passes the origin.

c. Find the frequency of small oscillations of the bead about the
origin.
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V/////////////////////,

4.15 A particle of mass m moves in one dimension along the positive x
axis. It is acted on by a constant force directed toward the origin with
magnitude B, and an inverse square law repulsive force with magnitude
A /x\

a. Find the potential energy function U(x).

b. Sketch the energy diagram for the system when the maximum
kinetic energy is Ko = imv0

2.

c. Find the equilibrium position, x$.

d. What is the frequency of small oscillations about x0?

4.16 An 1,800-lb sportscar accelerates to 60 mi /h in 8 s. What is the
average power that the engine delivers to the car's motion during this
period?

4.17 A snowmobile climbs a hill at 15 mi/hr. The hill has a grade of 1
ft rise for every 40 ft. The resistive force due to the snow is 5 percent of
the vehicle's weight. How fast will the snowmobile move downhill, assum-
ing its engine delivers the same power?

Ans. 45 mi /h

4.18 A 160-lb man leaps into the air from a crouching position. His
center of gravity rises 1.5 ft before he leaves the ground, and it then rises
3 ft to the top of his leap. What power does he develop assuming that
he pushes the ground with constant force?

Ans. clue. More than 1 hp, less than 10 hp

4.19 The man in the preceding problem again leaps into the air, but this
time the force he applies decreases from a maximum at the beginning
of the leap to zero at the moment he leaves the ground. As a reason-
able approximation, take the force to be F = Fo cos cot, where Fo is the
peak force, and contact with the ground ends when oot = TT/2. Find the
peak power the man develops during the jump.

4.20 Sand runs from a hopper at constant rate dm/dt onto a horizontal
conveyor belt driven at constant speed V by a motor.

a. Find the power needed to drive the belt.

b. Compare the answer to a with the rate of change of kinetic energy
of the sand. Can you account for the difference?

4.21 A uniform rope of mass X per unit length is coiled on a smooth
horizontal table. One end is pulled straight up with constant speed
v0.

a. Find the force exerted on the end of the rope as a function of
height y.

b. Compare the power delivered to the rope with the rate of change
of the rope's total mechanical energy.

4.22 A ball drops to the floor and bounces, eventually coming to rest.
Collisions between the ball and floor are inelastic; the speed after each
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collision is e times the speed before the collision where e < 1, (e is
called the coefficient of restitution.) If the speed just before the first
bounce is vOi find the time to come to rest.

Ans. clue. If v0 = 5 m/s, e = 0.5f then T « l s

4.23 A small ball of mass m is placed on top of a "superball" of mass
M, and the two balls are dropped to the floor from height h. How high
does the small ball rise after the collision? Assume that collisions with
the superball are elastic, and that m<£M. To help visualize the prob-
lem, assume that the balls are slightly separated when the superball hits
the floor. (If you are surprised at the result, try demonstrating the
problem with a marble and a superball.)

4.24 Cars B and C are at rest with their brakes off. Car A plows into
B at high speed, pushing B into C. If the collisions are completely
inelastic, what fraction of the initial energy is dissipated in car C? Ini-
tially the cars are identical.

4.25 A proton makes a head-on collision with an unknown particle at
rest. The proton rebounds straight back with |- of its initial kinetic
energy.

Find the ratio of the mass of the unknown particle to the mass of the
proton, assuming that the collision is elastic.

4.26 A particle of mass m and initial velocity v0 collides elastically with
a particle of unknown mass M coming from the opposite direction as
shown at left below. After the collision m has velocity vo/2 at right angles
to the incident direction, and M moves off in the direction shown in the
sketch. Find the ratio M/m.

4.27 Particle A of mass m has initial velocity v0. After colliding with
particle B of mass 2m initially at rest, the particles follow the paths shown
in the sketch at right below. Find 6.

Before

2m

/

45°

4.28 A thin target of lithium is bombarded by helium nuclei of energy
Eo. The lithium nuclei are initially at rest in the target but are essen-
tially unbound. When a helium nucleus enters a lithium nucleus, a
nuclear reaction can occur in which the compound nucleus splits apart
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into a boron nucleus and a neutron. The collision is inelastic, and the
final kinetic energy is less than Eo by 2.8 MeV. (1 MeV = 106 eV =
1.6 X 10~13 J). The relative masses of the particles are: helium, mass
4; lithium, mass 7; boron, mass 10; neutron, mass 1. The reaction can
be symbolized

7Li + 4He - • 10B - 2.8 MeV.

a. What is i?o,threshold* the minimum value of Eo for which neutrons
can be produced? What is the energy of the neutrons at this threshold?

Ans. Neutron energy = 0.15 MeV

b. Show that if the incident energy falls in the range EOtthreshold <
Eo < #o,threshold + 0-27 MeV, the neutrons ejected in the forward direc-
tion do not all have the same energy but must have either one or the
other of two possible energies. (You can understand the origin of the
two groups by looking at the reaction in the center of mass system.)

4.29 A "superball" of mass m bounces back and forth between two sur-
faces with speed v0. Gravity is neglected and the collisions are perfectly
elastic.

a. Find the average force F on each wall.
Ans. F = mvo

2/l

b. If one surface is slowly moved toward the other with speed V <<O,
the bounce rate will increase due to the shorter distance between colli-
sions, and because the ball's speed increases when it bounces from the
moving surface. Find F in terms of the separation of the surfaces, x.
(Hint: Find the average rate at which the ball's speed increases as the
surface moves.)

Ans. F = (mvo
2/l)(l/x)3

c. Show that the work needed to push the surface from I to x equals
the gain in kinetic energy of the ball. (This problem illustrates the
mechanism which causes a gas to heat up as it is compressed.)

4.30 A particle of mass m and velocity v$ collides elastically with a par-
ticle of mass M initially at rest and is scattered through angle © in the
center of mass system.

a. Find the final velocity of m in the laboratory system.
Ans. vf = [vo/(m + M)](m2 + M2 + 2mM cos ©)±

b. Find the fractional loss of kinetic energy of m.
Ans. clue. If m = M, (Ko - Kf)/K0 = (1 - cos @)/2
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5.1 Introduction

The last chapter introduced quite a few new physical concepts—
work, potential energy, kinetic energy, the work-energy theorem,
conservative and nonconservative forces, and the conservation of
energy.

In this chapter there are no new physical ideas; this chapter is
on mathematics. We are going to introduce several mathematical
techniques which will help express the ideas of the last chapter
in a more revealing manner. The rationale for this is partly that
mathematical elegance can be a source of pleasure, but chiefly
that the results developed here will be useful in other areas of
physics, particularly in the study of electricity and magnetism.
We shall find how to tell whether or not a force is conservative and
how to relate the potential energy to the force.

A word of reassurance: Don't be alarmed if the mathematics
looks formidable at first. Once you have a little practice with the
new techniques, they will seem quite straightforward. In any
case, you will probably see the same techniques presented from
a different point of view in your study of calculus.

In this chapter we must deal with functions of several variables,
such as a potential energy function which depends on x, y, and z.
Our first task is to learn how to take derivatives and find differ-
entials of such functions. If you are already familiar with partial
differentiation the next section can be skipped. Otherwise, read
on.

5.2 Partial Derivatives

We start by reviewing briefly the concept of the differential of a
function f(x) which depends on the single variable x. (Differ-
entials are discussed in greater detail in Note 1.1.)

Consider the value of f(x) at any point x. Let dx be an incre-
ment in x, known as the differential of x, which can be any size
we please. The differential df of / is defined to be

df = I — I dx.
\dx/

Note that (df/dx) stands for the derivative

* = l lm * •
dx AZ->O Ax
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The actual change in / is A/ = f(x + dx) — f(x). A/ differs
from df, as the sketch indicates, but if the limit dx —> 0 is to be
taken, the difference can be neglected,1 and we can use df and
A/ interchangeably.

Now let us consider a function f(x,y) which depends on two
variables x and y. For instance, / could be the area of a rec-
tangle of length x and width y. If we keep the variable y fixed
and let the variable x change by dx, the differential of / in this
case is

df -I lim
Ax,y) -f(x,yy

Ax dx.

The quantity in the bracket looks like a derivative. However, /
depends on two variables and since we are differentiating with
respect to only one variable, the quantity in the bracket is called
a partial derivative. The partial derivative is denoted by df/dx.
(Calculus texts sometimes use fx, but we shall avoid this notation
to prevent confusion with vector components.) df/dx is read
"the partial derivative of / with respect to x" or "the partial o f /
with respect to x." If we want to indicate that the partial deriva-
tive is to be evaluated at some particular point x0, yo, we can write

df(xo,yo)
dx or —

df
dx

The procedure for evaluating partial derivatives is straightfor-
ward; in evaluating df/dxt for example, all variables but x are
treated as constants.

Example 5.1 Partial Derivatives

Let

f — x2 sin y .

Then

df . .
- - = 2xs\ny,
dx

— = x2 cos y.
dy

1 Specifically, (A/ - df) is of order {dx)\ so that lim [(A/ - df)/&x] = 0.
Az->0
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We can generalize the procedure to any number of variables. For
instance, let

Then

df
dx

dy

~dz

= zexz,

= 1,

= xexz.

Let us consider what happens to f(x,y) if x and y both vary.
Let x change by dx and y change by dy. The change in / is

A/ = f(x + dxfy + dy) - f(x,y).

The right hand side can be written as follows:

f(x + dxt y + dy) - f(x,y) = [/(z + dx, y + dy) - f(x, y + dy)]
+ U(x, V + dy) - f(x,y)].

The first term on the right is the change in/due to dx; this is given
approximately by

(A/)dueto* «

The second term on the right is

(A/)duetoy « — Ay.

The total change is

A / df(^y_+_dy) df(x,y)
A/ « rfa: H — dy.

We define the differential of / t o be

,, dfix^y) , a/(a?,y) Jd/ = — dx H — dy. 5.1
dx dy

If we take the limit dx —• 0, dy —> 0, A/ approaches d/. In
applications where we are going to take the limit, we can use A/
and df interchangeably. Furthermore, even if we do not take
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the limit, the differential gives a good approximation to the actual
value of the change in / if dx and dy are small, as the following
example illustrates.

Example 5.2 Applications of the Partial Derivative

A. Suppose that / is the area of a rectangle of length x and width y.
Then / = xy. The change in area if x increases by dx and y increases
by dy is

A/ = f(x + dx,y + dy) - f(x,y)
= (x + dx)(y + dy) - xy
= y dx + xdy + (dx)(dy).

The differential o f / i s

df

y dx

dx dy
y dx + x dy.

We see that

A/ - df = (dx)(dy).

(dx)(dy) (dx)(dy) is the area of the small rectangle in the figure. As dx—> 0 and
dy —>Q, the area {dx)(dy) becomes negligible compared with the area
of the strips xdy and y dx, and we can use the differential df as an
accurate approximation to the actual change, A/.
B. Consider the function

f{x,y) = yzex.

At x = 0, y = 1 we have /(0fl) = 1. What is the value of /(0.03,1.01)?
Approximating the change in / by df we have

The partial derivatives are easily evaluated.

= yzex

M 10,1dx

df
dy 0,1 0,1
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Taking dx = 0.03, dy = 0.01, we find

df = (l)(0.03) + 3(0.01)

= 0.06.

The actual value, to four significant figures, is

A / = 0.0617.

5.3 How To Find the Force if You Know the Potential Energy

Our problem is this—suppose that we know the potential energy
function C/(r); how do we find F(r)? For one dimensional motion
we already know the answer from Sec. 4.8: Fx = —dU/dx. It
isn't difficult to generalize this result to three dimensions.

Our starting point is the definition of potential energy:

Ub - Ua = - <fn F • dr. 5.2

Let us consider the change in potential energy when a particle
acted on by F undergoes a displacement Ar.

U(r + Ar) - U(r) = - £ + A r F(r') • dr', 5.3

(We have labeled the dummy variable of integration by r' to avoid
confusion with the end points of the line integral, r and r + Ar.)
The left hand side of Eq. (5.3) is the difference in U at the two
ends of the path. Let us call this AU. If Ar is so small that F
does not vary appreciably over the path, the integral on the right
is approximately F • Ar. Therefore

AU « - F - Ar

= -(Fx Ax + FyAy + Fg Az). 5.4

We can obtain an alternative expression for AU by using the
results of the last section. If we approximate AU by the differ-
ential of U, we have from Eq. (5.1)

AUtst
dJLAx +

 dJLAy + ^LAz, 5.5
dx dy dz

Combining Eq. (5.4) and (5.5) yields

— Ax H Ay H Az « -Fm Ax - Fy Ay - Ft Az. 5.6
dx dy dz
When we take the limit (Ax,Ay,Az) —> 0f the approximation becomes
exact. Since Az, Ay, and Az are independent, Eq. (5.6) remains
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valid even if we choose Ay and Az to be zero. This requires that
the coefficients of Ax on either side of the equation be equal.
We conclude that

dx

f - -F-
dy

dz

We have the answer to the problem set at the beginning of this
section—how to find the force from the potential energy function.
However, as we shall see in the next section, there is a much neater
way of expressing Eq. (5.7).

5.4 The Gradient Operator

Equation (5.7) is really a vector equation. We can write it expli-
citly in vector form:

F = \FX + ]Fy + iF.

= _ r ^ ^ i ^ _ ^ . 5.8

dx dy dz

A shorthand way to symbolize this result is

F = -VU, 5.9

where

ox dy dz

Equation (5.10) is a definition, so if the notation looks strange,
it is not because you have missed something. Let's see what
VU means.

VU is a vector called the gradient of U or grad U. The symbol
V (called "del") can be written in vector form as follows:

v - , i . + , ± + S l . 5.11
dx dy dz

Obviously V is not really a vector; it is a vector operator. This
means that when V operates on a scalar function (the potential
energy function in our case), it forms a vector.
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The relation F = — VU is a generalization of the one dimen-
sional case. For example, suppose that U depends only on x.
Then

dx
and

Fx~ ~Tx
However, for a function of a single variable the partial derivative
is identical to the familiar total derivative. We have

_ _dU

Here are a few more examples.

Example 5.3 Gravitational Attraction by a Particle

If a particle of mass M is at the origin, the potential energy of mass m
a distance r from the origin is

U(x,y,z) -

Then
F =

=

GMm
r

-vU

+GMmv -
r

Consider the x component of V(l/r). Since r = V x 2 + y2 + z2, we
have

dx (x2 + y2 + z2)* (x2 + y2 + z2f
x

By symmetry the y and 2 terms are —y/rz and —z/r3, respectively.
Hence
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We have recovered the familiar expression for the force of gravity
between two particles.

Example 5.4 Uniform Gravitational Field

From the last chapter we know that the potential energy of mass m in a
uniform gravitational field directed downward is

U(x,y,z) = mgz,

where z is the height above ground. The corresponding force is

F = -VU

f
dz-mgk.

Example 5.5 Gravitational Attraction by Two Point Masses

The previous examples were trivial, since the forces were obvious by
inspection. Here is a more complicated case in which the energy method
gives a helpful shortcut.

Two particles, each of mass M, lie on the x axis at x = a and x = — a,
respectively. Find the force on a particle of mass m located at r.

We start by considering the potential energy of m due to the particle at

The distance isx = a. The distance is v ( # — a)2 + y2 + z2, and the potential energy
>s -GMm/\/(x - a)2 + y2 + z2 = -GMm/n. Similarly, the potential
energy due to the mass at x = —a is —GMm/y/ix + a)2+ y2 + z2 =
— GMm/r2. The total potential energy is the sum of these terms. This
illustrates a major advantage of working with energy rather than force.
Energy is a scalar and is simply additive, whereas forces must be added
vectorially.

We have u = — GMm/ri — GMm/r2, or

U = -GMm
1

[(x - a)2 + y2 +
• +

[(x + a)2 + y2 + z2]*

The force components are easily found by differentiation.

dU
Fx(x,y,z) = -

dx

= -GMm (x-a) (x + a)

[l(x-a)2 + y2 +

nn/r (x ~~ a . x + a\— GMm I 1 I
\ T\z f23 /

[{x + a)2 + y2 + z2]*J
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Similarly,

Fy(x,y,z) = - —
dy

= -GMm [ -^ + —

Fz(x,y,z) = —
dz

= -GMml — + —

If m is far from the other two masses so that \x\ >̂> a, we have r\ ~ r,
r2 « r. In this case

F 2GMmx

x~ r2 r
_ 2Gilf m y

V
 r2 r

. z

At large distances the force on m is like the force (—2GMm/r2)r that
would be exerted by a single mass 2M located at the origin.

Perhaps these examples suggest something of the convenience
of the energy method. Potential energy is much simpler to
manipulate than force. If force is needed, we can obtain it from
F = —VU. However, only conservative forces have potential
energy functions associated with them. Nonconservative forces
cannot be expressed as the gradient of a scalar function. For-
tunately, most of the important forces of physics are conservative.
In Sec. 5.6 we shall develop a simple means for telling whether a
force is conservative or not.

We next turn to a discussion of the physical meaning of the
gradient.

5.5 The Physical Meaning of the Gradient

Consider a particle moving under conservative forces with potential
energy U(x,y,z). As the particle moves from the point (x,y,z) to
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(x + dx, y + dy, z + dz), its potential energy changes by

U(x + dxt y + dy, z + dz) - U(x,y,z).

As explained in the last section, when we intend to take the limit
dx —> 0, dy —> 0, cte —> 0, we can represent the change in U by the
differential

The displacement is dx — dx\ + dy\ + dzk and we can write

dU = VU-dr 5.12

where VC/, the gradient of U, is

dx dy dz

Equation (5.12) expresses the fundamental property of the gra-
dient. The gradient allows us to find the change in a function
induced by a change in its variables. In fact, Eq. (5.12) is actually
the definition of gradient. Like a vector, the gradient operator
is defined without reference to a particular coordinate system.

To develop physical insight into the meaning of VU, it is helpful
to adopt a pictorial representation of potential energy. So let us
make a brief digression.

Constant Energy Surfaces and Contour Lines

The equation U(x,y,z) = constant = C defines for each value of
C a surface known as a constant energy surface. A particle con-
strained to move on such a surface has constant potential energy.
For example, the gravitational potential energy of a particle m at
distance r = Vx2 + y2 + z2 from particle M is U = —GMm/r.
The surfaces of constant energy are given by

GMm
— — c
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or
GMm

r = —

r= 1

The constant energy surfaces are spheres centered on M, as
shown in the drawing. (We have taken GMm = 1 N m 2 for
convenience.)

Constant energy surfaces are usually difficult to draw, and for
this reason it is generally easier to visualize U by considering the
lines of intersection of the constant energy surfaces with a plane.
These lines are sometimes referred to as constant energy lines
or, more simply, contour lines. For spherical energy surfaces the
contour lines are circles. The next example discusses contour
lines for a more complicated situation.

Example 5.6 Energy Contours for a Binary Star System

Consider a satellite of mass m in the gravitational field of a binary star
system. The stars have masses Ma and Mb and are separated by dis-
tance R. The potential energy of the satellite is

U = -
GmMb

where ra and rb are its distances from the two stars. Consider the con-
tour lines in a plane through the axis of the stars. Near star a, where
Ta <£ rb, we have

GmMa

Here the contour lines are effectively circles. Near star b, where rb

the contour lines are also effectively circles.
In the intermediate region between the two stars the effects of both

bodies are important. The contour lines in the drawing opposite were
calculated numerically, with GmMb/R = 1, and Mb/Ma = h
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To see the relation between VU and contour lines, consider
the change in U due to a displacement dr along a contour. In
general

dU = VU-dr.

However, on a contour line, U is constant and dU = 0. Hence

V[7 • dr = 0 (dr along contour line).

Since VU and dr are not zero, we see that the vector VU must
be perpendicular to dr. More generally, VU is perpendicular to
any displacement dr on a constant energy surface. Hence, at
every point in space, VU is perpendicular to the constant energy
surface passing through that point.

It is not hard to show that VU points from lower to higher
potential energy. Consider a displacement dr pointing in the
direction of increasing potential energy. For this displacement
dU > 0, and since dU = VU • dr > 0, we see that VU points
from lower to higher potential energy. Hence the direction of
VU is the direction in which U is increasing most rapidly.

Since VU = — F, we conclude that F is everywhere perpen-
dicular to the constant energy surfaces and points from higher to
lower potential energy.
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Given the contour lines, it is easy to sketch the force. For the
gravitational interaction of a particle with a mass located at the
origin, the contour lines are circles. The force points radially
inward from higher to lower potential energy, as we expect.

The drawing below shows the force at various points along the
contour lines of the binary star system of Example 5.6. We can

/ '<

> X

V

extend the arrows to form a curve everywhere parallel to F. These
lines show the direction of the force everywhere in space and pro-
vide a simple map of the force field. Note that the force lines are
perpendicular to the energy contours everywhere. Point P, where
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two energy contours intersect, presents a problem. How can the
force point in two directions at once? The answer is that point
P is the equilibrium point between the two stars where the force
vanishes.

u If two adjacent energy surfaces differ in energy by AC/, then
u+ AU where the separation is AS,

vu\
AC/

AS'

Hence, the closer the surfaces, the larger the gradient. More
physically, the force is large where the potential energy is changing
rapidly.

5.6 How to Find Out if a Force Is Conservative

Although we have seen numerous examples of conservative forces,
we have no general test to tell us whether a given force F(r) is
conservative. Let us now attack this problem.
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Our starting point is the observation that if F(r) is conservative,
the work done on a particle by force F as it moves from a to b and
back to a around a closed path is

Path 1
fl b

Path 2
Ub) = 0.

Thus, the work done by a conservative force around a closed path
must be zero. Symbolically,

/ F • dx = 0, 5.13

where the integral is a line integral taken around any closed path.
(The symbol f indicates that the path is closed.) Conversely, if
a force F satisfies Eq. (5.13) for all paths (not just for a special
path), the force must be conservative. Hence, Eq. (5.13) is a
necessary and sufficient condition for a force to be conservative.

Although you may think that the problem is now more com-
plicated than when we began, the fact is that we have taken a
big step forward. However, in order to proceed we must further
transform the problem.

Consider f t • dx, where the integral is around loop 1. If we
break the integral into two integrals, via the "shortcut" cd, we
have

F • dx = j> F • dx + j> F • dx.

This identity follows because the contribution to (p F • dx from the
2

line segment cd is exactly canceled by the contribution from the

segment dc to (b F • dx. Traversing the same line in two direc-
3

tions gives zero net contribution to the total work.
We can proceed to chop up the line integral into many small

integrals around tiny loops, as shown in the sketch. When the
work around each tiny loop is added, all the contributions from
the interior paths cancel, and the total work is identical to the
work done in traversing the original perimeter. Hence,

dx = F • dx 5.14

where (p F • dx is the work done in circling the ith tiny loop.
i

If you are wondering where this is leading, the answer is that
by focusing our attention on one of the tiny paths we can convert
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y

y + Ay

the original problem, which involves an integral over a large area,
into a problem involving quantities at a single point in space. To
do this, we must evaluate the line integral around one of the tiny
loops. Let us consider a rectangular loop lying in the xy plane

+ &y) with sides of length Ax and Ay. The integral around the loop is

j> F • dx = j F • dx + j F • dx + j F • dx + j F • dx.

(x,y) (x + Ax,y)

Ax

Integrals 1 and 3 both involve paths in the x direction, so let us
consider them together. Integral 1 is

5.15

If Ax is small,

f F • dr » Fx(x,y) Ax.
1

Similarly, the integral along path 3 is

F-dx ~ -Fx(x, y + Ay) Ax.

The integrals along paths 1 and 3 almost cancel. However, the
small difference in y between the two paths is important. We
have

F-dx + j F • dx « Fx(x,y) Ax - Fx(x, y + Ay) Ax

= ~[Fx(x, y + Ay) - Fx(xfy)] Ax. 5.16

You may be puzzled by the fact that we are allowing for the fact
that y is different between the two paths but are ignoring the vari-
ation of x along each of the paths. The reason is simply that the
variation in y has an effect in first order, whereas the variation
in x does not, as you can verify for yourself.

We shall eventually take the limit Az—• 0, Ay-* 0, and from
the discussion of differentials in Sec. 5.2, we have

6FX
Fx(x, y + Ay)- Fx(xfy) = — Ay.

Hence Eq. (5.16) can be written

F-dr + <t F-dr = Ax Ay.
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Applying the same argument to paths 2 and 4 gives

j F • dx + j F • dx = — Ax Ay.

The line integral around the tiny rectangular loop in the xy plane
is therefore

5.17a

Although we shall not stop to prove it, this result holds for a small
loop of any shape if Ax Ay is replaced by the actual area AA.

The line integral around a tiny loop in the yz plane can be found
by simply cycling the variables, x—>y, y—>z, z—>x. We find

5.176

5.17c

Similarly, for a loop in the xz plane,

f
xz plane

Ax Az.

The line integral around a tiny loop in an arbitrary orientation
can be decomposed into line integrals in the three coordinate
planes, as the sketch suggests.

Accordingly, the line integral around any tiny loop will vanish
provided

dx

dF.

dy

dF,

dz

dFx

dz

dx

5.18

If Eq. (5.18) is satisfied everywhere, the line integral around any
tiny loop vanishes and it follows that fV • dx = 0 for any closed
path. Hence, a force satisfying Eq. (5.18) is conservative.

We have achieved our goal of finding a mathematical test for
whether or not a given force is conservative. However, Eq. (5.18)
is rather cumbersome as it stands. Fortunately, we can sum-
marize it in simple vector notation. If we use the familiar rules
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of evaluating the cross product (Sec. 1.4) and treat the vector
operator V as if it were a vector, then

V X F =

t 1 k
d_ d_ d_

Fx Fy Fz

_ (dF, dFy\ (dFx dF\ c (dFy dF

V X F is called the curl of F.
5.19

Example 5.7 The Curl of the Gravitational Force

We know that the gravitational force is conservative since it possesses a
potential energy function. However, for purposes of illustration, let us
prove that the force of gravity is conservative by showing that its curl is
zero.

For the gravitational force between two particles we have

= A - = A
3

= d_ (Az\ _ d_ /Ay\
dy\r*J dz\r*)

The first term on the right hand side is

— Az(x* + y2 + 22)-* = M-iXx2 + y
dy

Similarly,

d Ay _
d2 r3

Hence,

Z\(V X F)x = - 3 A "" + 3A ^ = 0.

By cycling the coordinates, we see that the other components of
V X F are also zero. Hence V X F = 0 and the gravitational force is
conservative.
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Example 5.8 A Nonconservative Force

Here is an example of a nonconservative force: consider a river with a
current whose velocity V is maximum at the center and drops to zero
at either bank.

--HIV = - 1

The width of the river is 2a, and the coordinates are shown in the sketch.
Suppose that a barge in the stream is hauled around the path shown,

by winches on the banks. The barge is pulled slowly and we shall assume
that the force exerted on it by the current is

Friver = &V,

where b is a constant. The barge is effectively in equilibrium, so that
the force exerted by the winches is

F = — F r i v e r - 6 V

Let us evaluate V X F to determine whether or not the force is con-
servative. We have

dz

dz dx

dx dy

26 Vo
• x.

Since the curl does not vanish, the force is nonconservative and the
winches must do work to pull the barge around the closed path. The
work done going upstream is F(x = 0)1, and the work done going down-
stream is —F(x = a)l. (In this idealized problem no work is needed
to move the barge cross stream.) Since F(x) = bVo(l — x2/a2), the
total work done by the winches is

W = bVol - bVol

= bVol
H)
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\

Example 5.9 A Most Unusual Force Field

The field described in this example has some very surprising properties.
Consider a particle moving in the xy plane under the force

r

_x where A is a constant. The force decreases as 1/r, and is directed tan-
gentially about the origin, as shown.

The work done as the particle travels through dr = dr r + r dd 6 is

dW = F • dr

= -rdd
r

= Add.

Surprisingly, the work does not depend on r, but only on the angle
subtended.

Offhand, F may seem to be conservative, since the work done in going
from ri to r2 in the drawing below, left, appears to be independent of path:

W = A dd

For instance, for the closed path shown above right,

W = f2 Add -\- (fn A dd
7 / r2= A(62 -

= 0,
+ - 02)

as we expect for a conservative force.
However, consider the work done along a closed path which encloses

the origin as in the drawing at the left. Since 6X = 0 and 02 = 2TT,
the work W = 2TA. Evidently, F is not conservative.
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Every time the particle makes a complete trip around the origin, the
force does work 2irA, but for a closed path that does not encircle the
origin, W = 0. The force appears conservative provided that the path
does not enclose the origin.

If you evaluate V X F, you will find that it is zero everywhere except
at the origin, where it has a singularity. It is this singularity which gives
the force such peculiar properties. For the line integral of a force to
vanish around a closed path, the curl must be zero everywhere inside
the path. In this example, V X F is zero everywhere except at the
origin.

If a force is conservative, it is always possible to find a potential
energy function U such that F = — VU. The following example
shows how this is done.

Example 5.10 Construction of the Potential Energy Function

In this example we shall find the potential energy function associated
with the force

F = A(xH + y\). 1

The first thing is to ascertain that V X F = 0, for otherwise U does
not exist. Since you can easily verify this for yourself, we proceed to
determine U. U must obey

F

= Ax2

and

by
Ay.
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We can integrate Eq. (2) to obtain

U(x,y) = - - x' + f(y). 4

Equation (4) needs some explanation. If U depended only on x, then
integrating Eq. (2) would yield U(x) = (-A/3)x* + C, where C is a con-
stant. However, U also depends on y. As far as partial differentiation
with respect to x is concerned, }(y) is a constant, since df(y)/dx = 0.

Equation (4) is the most general solution of Eq. (2), and we can proceed
to find the solution to Eq. (3). By substituting Eq. (4) into Eq. (3), we
obtain

or

df(y) = df(y)
dy dy

-Ay.

This can be integrated to give

A n „

where C is a constant. [Since f(y) is a function of the single variable y,
the constant of integration cannot involve x.]

The potential energy is

u = - j * » - Y ^ + C.

Suppose that we try to apply this method to a nonconservative force.
For instance, consider

F = A(xy\ + t/2j).

The curl of F is not zero. Nevertheless, we can attempt to solve the
equations

Axy

Ay\
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The general solution of Eq. (5) is

If we substitute this into Eq. (6), we have

2.

or

dy

x A y .
dy 2

But f(y) cannot depend on x, so that this equation has no solution.
Hence, it is impossible to construct a potential energy function for this
force.

In closing this section, let's take a brief look at the physical
meaning of the curl.

Example 5.11 How the Curl Got Its Name

The curl was invented to help describe the properties of moving fluids.
To see how the curl is connected with "curliness" or rotation, consider an
idealized whirlpool turning with constant angular velocity co about the z
axis. The velocity of the fluid at r is

v = ra>6,

where 8 is the unit vector in the tangential direction. In cartesian
coordinates,

v = rco(— sin coH + cos o)t j)

rco

6 = cor
:J
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The curl of v is

VX v =

i

d

~dx
— cay

= 2cok.

J
d_

dy
0)X

k

d

Jz
0

If a paddle wheel is placed in the liquid, it will start to rotate. The
rotation will be a maximum when the axis of the wheel points along the-
z axis parallel to V X v. In Europe, curl is often called "rot" (for rota-
tion). A vector field with zero curl gives no impression of rotation, as
the sketches illustrate.

curl = 0 curl = 0 curl *= 0 curl =£ 0

5.7 Stokes' Theorem

In Sec. 5.6 we stopped short of proving a remarkable result, known
as Stokes' theorem, which relates the line integral of a vector field
around a closed path to an integral over an area bounded by the
path. Although Stokes' theorem is indispensible to the study of
electricity and magnetism, we shall have little further use for it
in our study of mechanics. Nevertheless, we have already devel-
oped most of the ideas involved in its proof, and only a brief addi-
tional discussion is needed.

As we discussed earlier, the line integral of F around a closed
path I can be written as the sum of the line integrals around each
tiny loop.

F-dr

This result holds whether F is conservative or not; we shall not
assume that F is conservative in this proof. Stokes' theorem
contains no physics—it is a purely mathematical result.
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A A,-

Our starting point is Eq. (5.17).
the xy plane,

For a tiny rectangular loop in

As we have pointed out, the result is independent of the shape of
the loop provided that we replace (Ax Ay){ by the loop's area AA{.
We can write the area element as a vector AAt = A^Un, where n
is normal to the plane of the loop. (Example 1.4 discusses the
use of vectors to represent areas.) For a loop in the xy plane.
AA = AAzk and we have

x dy )i

= [(V X F)2 AiU-. 5.20

If the tiny loop is at an arbitrary orientation, it is plausible that

j). F • dx = [(curl F)x AAX + (curl F)y AAy + (curl F)2 AA8]{

y = [curl F • A A];.

The line integral of F around path I is therefore

dx =

AAX-. 5.21

In words, the line integral is equal to the result of taking the scalar
product of each vector area element with the curl of F at that ele-
ment and summing over all elements bounded by the curve. In
the limit AAt—•(), the number of area elements approaches
infinity and the sum in Eq. (5.21) becomes an integral. We then
have Stokes' theorem

dx = /curl F • dA. 5.22

Two important remarks should be made about Stokes' theorem,
Eq. (5.22). First, the area of integration on the right hand side
can be any area bounded by the closed path. Second, there is
an apparent ambiguity to the direction of dA, since the normal
can be out from either side of the area element. However, Eq.
(5.17) was deduced using a counterclockwise circulation about the
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loop, and in defining the vector associated with the area element,
we automatically set up the convention that the direction of dA
is given by the right hand rule. If the circulation is counterclock-
wise as seen from above, the correct direction of dA is the one that
tends to point "up."

Example 5.12 Using Stokes' Theorem

In Example 5.8 we discussed a barge being towed against the current.

We found the work done in going around the path in the sketch by evalu-

ating the line integral (f) F • dr = W. In this example we shall find the

work by using Stokes' theorem

W = J(v X F) • dA.

' * 1

/1

I I I '

'I 1 1

1 *

1

IT
-1

li
P

It is natural to integrate over the surface in the xy plane, as shown in
the drawing above right. Since the direction of circulation is clockwise,
dA = - dA k, and we have W = - J(V X F), dA.
From Example 5.8, the force is

bV{ B>
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and

2bVox

Since the integrand does not involve y, it is convenient to take dA = I dx.
Then

W = / x dx
Jo a2

= bVol,

as we found previously by evaluating the line integral.

Problems 5.1 Find the forces for the following potential energies.

a. U = Ax2 + By2 + Cz2

b. U = A \n(x2 + y2 + z2) (In = loge)(z
2 + y2 + z2)

c. U = A cos 6/r2 (plane polar coordinates)

5.2 A particle of mass m moves in a horizontal plane along the parabola
y = x2. At t — 0 it is at the point (1,1) moving in the direction shown with
speed #<)• Aside from the force of constraint holding it to the path, it
is acted upon by the following external forces:

A radial force
A force given by

Fa = -Ar*r
Fb = B(y2i - x2\)

where A and B are constants.

a. Are the forces conservative?

b. What is the speed vf of the particle when it arrives at the origin?
Ans. vf = (v0

2 + A/2m

5.3 Decide whether the following forces are conservative.

a. F = Fo sin at, where Fo is a constant vector.

b. F = Adr, A = constant and 0 < 6 < 2w. (F is limited to the xy
plane.)

c. A force which depends on the velocity of a particle but which is
always perpendicular to the velocity.
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N

5.4 Determine whether each of the following forces is conservative.
Find the potential energy function if it exists. A, a, $ are constants.

a. F = A(3i + z\ + 2/k)

b. F = Axyz(\ + j + k)

c. Fx = 3Ax2y5eaz, Fy = 5Ax*y4eaz, Fz = aAx*y5eaz

d. Fx = A sin (ay) cos (/3z), / ^ = — Axa cos (at/) cos (0z), and /^, =
^4x sin (a?/) sin (/3z)

5.5 The potential energy function for a particular two dimensional force
field is given by U = Cxe~y, where C is a constant.

a. Sketch the constant energy lines.

b. Show that if a point is displaced by a short distance dx along a con-
stant energy line, then its total displacement must be dx = dx{\ + }/x).

c. Using the result of b, show explicitly that vU is perpendicular to
the constant energy line.

5.6 If A(r) is a vector function of r which everywhere satisfies V X A = 0,
show that A can be expressed by A(r) = V</>(r), where 0(r) is some scalar
function. (Hint vThe result follows directly from physical arguments.)

5.7 When the flattening of the earth at the poles is taken into account,
it is found that the gravitational potential energy of a mass m a distance
r from the center of the earth is approximately

_ _ 0 ^ [l _ 5,» X 1 0 - ( ^ (3 co.- - 1)].
where 6 is measured from the pole.

Show that there is a small tangential gravitational force on m except
above the poles or the equator. Find the ratio of this force to GMem/r2

for d = 45° and r = Re.

5.8 How much work is done around the path that is shown by the force
F = A(y2t + 2x2]), where A is a constant and x and y are in meters?
Find the answer by evaluating the line integral, and also by using Stokes'
theorem.

Ans. W = Ad3
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6.1 Introduction

Our development of the principles of mechanics in the past five
chapters is lacking in one important respect: we have not devel-
oped techniques to handle the rotational motion of solid bodies.
For example, consider the common Yo-Yo running up and down
its string as the spool winds and unwinds. In principle we already
know how to analyze the motion: each particle of the Yo-Yo moves
according to Newton's laws. Unfortunately, analyzing rotational
problems on a particle-by-particle basis is an impossible task.
What we need is a simple method for treating the rotational motion
of an extended body as a whole. The goal of this chapter is to
develop such a method. In attacking the problem of translational
motion, we needed the concepts of force, linear momentum, and
center of mass; in this chapter we shall develop for rotational
motion the analogous concepts of torque, angular momentum, and
moment of inertia.

Our aim, of course, is more ambitious than merely to under-
stand Yo-Yos; our aim is to find a way of analyzing the general
motion of a rigid body under any combination of applied forces.
Fortunately this problem can be divided into two simpler problems
—finding the center of mass motion, a problem we have already
solved, and finding the rotational motion about the center of
mass, the task at hand. The justification for this is a theorem
of rigid body motion which asserts that any displacement of a
rigid body can be decomposed into two independent motions: a
translation of the center of mass and a rotation about the center

To bring the body from position A to some new position B, first translate it so
that the center of mass coincides with the new center of mass, and then rotate
it around the appropriate axis through the center of mass until the body is in
the desired position.
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of mass. A few minutes spent playing with a rigid body such as
a book or a chair should convince you that the theorem is plausible.
Note that the theorem does not say that this is the only way to
represent a general displacement—merely that it is one possible
way of doing so. The general proof of this theorem1 is presented
in Note 6.1 at the end of the chapter. However, detailed attention
to a formal proof is not necessary at this point. What is important
is being able to visualize any displacement as the combination of
a single translation and a single rotation.

Leaving aside extended bodies for a time, we start in the best
tradition of physics by considering the simplest possible system—
a particle. Since a particle has no size, its orientation in space
is of no consequence, and we need concern ourselves only with
translational motion. In spite of this, particle motion is useful
for introducing the concepts of angular momentum and torque.
We shall then move to progressively more complex systems, cul-
minating, in Chap. 7, with a treatment of the general motion of a
rigid body.

6.2 Angular Momentum of a Particle

Here is the formal definition of the angular momentum L of a par-
ticle which has momentum p and position vector r with respect
to a given coordinate system.

L = r x p 6.1

The unit of angular momentum is kg-m2/s in the SI system or
gcm2/s in cgs. There are no special names for these units.

Angular momentum is our first physical quantity to involve the
cross product, (See Sees. 1.2 and 1.4 if you need to review the
cross product.) Because angular momentum is so different from
anything we have yet encountered, we shall discuss it in great
detail at first.

Possibly the strangest aspect of angular momentum is its direc-
tion. The vectors r and p determine a plane (sometimes known
as the plane of motion), and by the properties of the cross product,
L is perpendicular to this plane. There is nothing particularly
"natural" about the definition of angular momentum. However,
L obeys a very simple dynamical equation, as we shall see, and
therein lies its usefulness.

1 Euler proved that the general displacement of a rigid body with one point fixed
is a rotation about some axis; the theorem quoted in the text, called Chasle's
theorem, follows directly from this.
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The diagram at left shows the trajectory and instantaneous
position and momentum of a particle. L = r x p is perpendicular
to the plane of r and p, and points in the direction dictated by the
right hand rule for vector multiplication* Although L has been
drawn through the origin, this location has no significance. Only
the direction and magnitude of L are important.

If r and p lie in the xy plane, then L is in the z direction. L is
in the positive z direction if the "sense of rotation" of the point
about the origin is counterclockwise, and in the negative z direc-
tion if the sense of rotation is clockwise. Note that the sense of
rotation is well defined even if the trajectory is a straight line.
The only exception is when the trajectory aims at the origin, in
which case r and p are along the same line so that L is 0 anyway.

Sense of
rotation

L,>0

Sense of
rotation

L<0

There are various methods for visualizing and calculating angu-
lar momentum. Here are three ways to calculate the angular
momentum of a particle moving in the xy plane.

Method 1

L = r X p

= rp sin <£k

or

L t = rp sin <f>.

For motion in the xy plane, L lies in the z direction. Its magni-
tude has a simple geometrical interpretation: the line r± has
length r± = r sin (TT — <j>) = r sin <£. Therefore,

Lt = r±p,
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where r± is the perpendicular distance between the origin and the
line of p. This result illustrates that angular momentum is pro-
portional to the distance from the origin to the line of motion.

As the sketches show, an alternative way of writing Lz is

Lz = rp±,

where p± is the component of p perpendicular to r

Method 2

Resolve r into two vectors r± and r\\,

r = r± + r,i,

such that r± is perpendicular to p, and ry is parallel to p. Then

L = r x p = (r± + r,i) x p

= (*± X p) + (I-,, X p)

= *± X pf

since r\\ x p = 0. (Parallel vectors have zero cross product.)
Evaluating the cross product rx x p is trivial because the vectors
are perpendicular by construction. We have

as before. By a similar argument,

Method 3

Consider motion in the xy plane, first in the x direction and then
in the y direction, as in drawings a and b on the next page.
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r

(a) (b)

\y

Pyl

= xPy-ypx

(c)

The most general case involves both these motions simultan-
eously, as drawings above show.

Hence Lz = xpy — ypx, as you can verify by inspection or by
evaluating the cross product as follows. Using r = (x,y,0) and
P = (Px,py,Q), we have

L = r X p

=
I

X

Vx
(xpy

J
y

Py

k
0
0

We have limited our illustrations to motion in the xy plane where
the angular momentum lies entirely along the z axis. There is,
however, no difficulty applying any of these methods to the general
case where L has components along all three axes.

Example 6.1 Angular Momentum of a Sliding Block

Consider a block of mass m and negligible dimensions sliding freely in
the x direction with velocity v = i>i, as shown in the sketch. What is its
angular momentum LA about origin A and its angular momentum LB
about the origin B?

As shown in the drawing on the top of page 237, the vector from origin
A to the block is

rA = xt.

Since TA is parallel to v, their cross product is zero and

LA = mxA X v

= 0.
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Taking origin B, we can resolve the position vector xB into a component
rii parallel to v and a component rx perpendicular to v. Since rii X v = 0,
only rx gives a contribution to LB- We have \r± X v| = Iv and

LB = mxB X v

= mlvk.

LB lies in the positive z direction because the sense of rotation is counter-
clockwise about the z axis.

To calculate LB formally we can write XB — x\ — l\ and evaluate \B X v
using our determinantal form.

LB

as

= mxB X

= m
i
X

V

= mlvk

before5.

V

J
-I
0

k
0
0

The following example shows in a striking way how L depends
on our choice of origin.

Example 6.2 Angular Momentum of the Conical Pendulum

Let us return to the conical pendulum, which we encountered in Example
2.8, to illustrate some features of angular momentum. Assume that the
pendulum is in steady circular motion with constant angular velocity u.

We begin by evaluating LA, the angular momentum about origin A.
From the sketch we see that LA lies in the positive z direction. It has
magnitude \r±\ |p| = |r| |p| = rp, where r is the radius of the circular
motion. Since

|p| = Mv

= Mroo,

we have

LA = Mr*uk.

Note that LA is constant, both in magnitude and direction.
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Now let us evaluate the angular momentum about the origin B located
at the pivot. The magnitude of L# is

= |r' X p|

- |r'| |p| = t|p|

= Mlro),

where |r'| = I, the length of the string. It is apparent that the magnitude
of L depends on the origin we choose.

Unlike LA, the direction of LB is not constant. LB is perpendicular to
both r' and pf and the sketches below show lB at different times. Two
sketches are given to emphasize that only the magnitude and direction
of L are important, not the position at which we choose to draw it. The
magnitude of LB is constant, but its direction is obviously not constant;
as the bob swings around, LB sweeps out the shaded cone shown in the
sketch at the right. The z component of LB is constant, but the hori-
zontal component travels around the circle with the bob. We shall see
the dynamical consequences of this in Example 6.6.

6.3 Torque

To continue our development of rotational motion we must intro-
duce a new quantity torque *, The torque due to force F which
acts on a particle at position r is defined by

= r x F. 6.2

In the last section we discussed several ways of evaluating angular
momentum, r x p. The mathematical methods we developed for
calculating the cross product can also be applied to torque r x F.
For example, we have

= K
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or

hi = |r| |FX|

or, formally,

J
y

Fx Fy Fz

We can also associate a "sense of rotation" using r and F. Assume
in the sketch that all the vectors are in the xy plane. The torque
on m\ due to Fi is along the positive z axis (out of the paper) and
the torque on m2 due to F2 is along the negative z axis (into the
paper).

It is important to realize that torque and force are entirely
different quantities. For one thing, torque depends on the origin
we choose but force does not. For another, we see from the
definition T = r x F that T and F are always mutually perpen-
dicular. There can be a torque on a system with zero net force,
and there can be force with zero net torque. In general, there
will be both torque and force. These three cases are illustrated
in the sketches below. (The torques are evaluated about the
centers of the disks.)

Torque is important because it is intimately related to the rate
of change of angular momentum:

dl d .

dx
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But (dr/dt) x p = v x mv = 0f since the cross product of two
parallel vectors is zero. Also, dp/dt = F, by Newton's second
law. Hence, the second term is r x F = t, and we have

T =
dt
di

6.3

Equation (6.3) shows that if the torque is zero, L = constant and
the angular momentum is conserved. As you may already realize
from our work with linear momentum and energy, conservation
laws are powerful tools. However, because we have considered
only the angular momentum of a single particle, the conservation
law for angular momentum has not been presented in much gen-
erality. In fact, Eq. (6.3) follows directly from Newton's second
law—only when we talk about extended systems does angular
momentum assume its proper role as a new physical concept.
Nevertheless, even in its present context, considerations of angu-
lar momentum lead to some surprising simplifications, as the next
two examples show.

r(t+ At)

Example 6.3 Central Force Motion and the Law of Equal Areas

In 1609 Kepler announced his second law of planetary motion, the law of
equal areas: that is, the area swept out by the radius vector from the
sun to a planet in a given time is the same for any location of the planet
in its orbit. The sketch (not to scale) shows the areas swept out by the
earth during a month at two different seasons. The shorter radius
vector at B is compensated by the greater speed of the earth when it is
nearer the sun. We shall now show that the law of equal areas follows
directly from considerations of angular momentum, and that it holds not
only for motion under the gravitational force but also for motion under
any central force.

Consider a particle moving under a central force, F(r) = f(r)r, where
f(r) has any dependence on r we care to choose. The torque on the
particle about the origin is t = r X F(r) = r X f(r)r = 0. Hence, the
angular momentum of the particle L = r X p is constant both in mag-
nitude and direction. An immediate consequence is that the motion is
confined to a plane; otherwise the direction of L would change with time.
We shall now prove that the rate at which area is swept out is constant,
a result that leads directly to the law of equal areas.

Consider the position of the particle at t and t + At, when its polar
coordinates are, respectively, (r,0) and (r + Ar, 6 + Ad). The area
swept out is shown shaded in the drawing at left.
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rA6

For small values of A0, the area AA is approximately equal to the area
of a triangle with base r + Ar and altitude r Ad, as shown.

AA « i(r + Ar)(r Ad)

= |r2 AS + \r Ar Ad

The rate at which area is swept out is

dA ,. AA
— = hm
dt At-+o At

= Mm - r 2 _

A^O 2 V A*

1 dd= -r2 —

2 dt

Ad Ar\

At )

(The small triangle with sides r Ad and Ar makes no contribution in the
limit.)

In polar coordinates the velocity of the particle is v = ff + rd§. Its
angular momentum is

L = (r X mv) = rx X m(fr + r08) = mr20k.

(Note that ? X 6 = k). Hence,

dt

2m

Since Lz is constant for any central force, it follows that dA/dt is constant
also.

Here is another way to prove the law of equal areas. For a central
force, F$ = 0, so that ae = 0. It follows that rae = 0, but rae =
r(2rd + rd) = (d/dt)(r2d) = 2(d/dt)(dA/dt). Hence, dA/dt = constant.

Example 6.4 Capture Cross Section of a Planet

This example concerns the problem of aiming an unpowered spacecraft
to hit a far-off planet. If you have ever looked at a planet through a
telescope, you know that it appears to have the shape of a disk. The
area of the disk is wR2, where R is the planet's radius. If gravity played
no role, we would have to aim the spacecraft to head for this area in
order to assure a hit. However, the situation is more favorable than this
because of the gravitational attraction of the spacecraft by the planet.
Gravity tends to deflect the spacecraft toward the planet, so that some
trajectories which are aimed outside the planetary disk nevertheless end
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in a hit. Consequently, the effective area for a hit Ae is greater than
the geometrical area Ag = wR2. Our problem is to find Ae.

We shall neglect effects of the sun and other planets here, although
they would obviously have to be taken into account for a real space
mission.

One approach to the problem would be to work out the full solution
for the orbit of the spacecraft in the gravitational field of the planet.
This involves a lengthy calculation which is not really necessary; by using
conservation of energy and angular momentum, we can find the answer
in a few short steps.

The sketch shows several possible trajectories of the spacecraft. The
distance between the launch point and the target planet is assumed to
be extremely large compared with R, so that the different trajectories
are effectively parallel before the gravitational force of the planet becomes
important. The line aa is parallel to the initial trajectories and passes
through the center of the planet. The distance b between the initial
trajectory and line aa is called the impact parameter of the trajectory.
The largest value of b for which the trajectory hits the planet is indicated
by bf in the sketch. The area through which the trajectory must pass
to assure a hit is Ae = w(b')2. (If there were no attraction, the trajec-
tories would be straight lines. In this case, br = R and Ae = irR2 = Ag.)

To find b', we note that both the energy and angular momentum of the
spacecraft are conserved. (Linear momentum of the spacecraft is not
conserved. Do you see why?)

The kinetic energy is imv2, and the potential energy is —mMG/r. The
total energy E = K + U is

E = -mv2 -mMG1-
2 r

The angular momentum about the center of the planet is

L = —mrv sin <j>.
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Initially, r —> oof v = 0̂» and r sin <j> — b'. Hence,

L = —mb'vOt

E = - rni^o2-

The point of collision occurs at the distance of closest approach of the
orbit, r = R\ otherwise the trajectory would not "just graze" the planet.
At the distance of closest approach, r and v are perpendicular. If v(R)
is the speed at this point,

L = -mRv(R)

Since L and E are conserved, their values at r = R must be the same as

their values at r = oo. Hence

-mb'vo = -mRv(R)

Equation (1) gives v(R) = vQbr/R, and by substituting this in Eq. (2) we
obtain

The effective area is

A. = TT(&')2

mvo
2/2 )

As we expect, the effective area is greater than the geometrical area.
Since mMG/R = —U(R), and mvo

2/2 = E, we have
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If we "turn off" gravity, U(R) —•> 0 and Ae —» Ag, as we require. Fur-
thermore, as E —» 0, Ae —> oo, which means that it is impossible to miss
the planet, provided that you start from rest. For E — 0, the space-
craft inevitably falls into the planet.

If there is a torque on a system the angular momentum must
change according to * = dl/dt, as the following examples illustrate.

Example 6.5 Torque on a Sliding Block

For a simple illustration of the relation * = dL/dt, consider a small block
of mass m sliding in the x direction with velocity v = v\. The angular
momentum of the block about origin B is

?nrB X v

mlvk,

1

as we discussed in Example 6.1. If the block is sliding freely, v does not
change, and LB is therefore constant, as we expect, since there is no
torque acting on the block.

Suppose now that the block slows down because of a friction force
f = — / i . The torque on the block about origin B is

= -Z/k. 2

We see from Eq. (1) that as the block slows, LB remains along the posi-
tive z direction but its magnitude decreases. Therefore, the change
ALB in LB points in the negative z direction, as shown in the lower sketch.
The direction of ALB is the same as the direction of xB. Since T = dL/dt
in general, the vectors T and AL are always parallel.

From Eq. (1),

ALB = ml Av k,

where Av < 0.
have

Dividing Eq. (3) by At and taking the limit At—> 0, we

dLB , dv r

= ml — k.
dt dt

By Newton's second law, m dv/dt = —/and Eq. (4) becomes

s - -«
as we expect.
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It is important to keep in mind that since x and L depend on the choice
of origin, the same origin must be used for both when applying the rela-
tion x = dL/dt, as we were careful to do in this problem.

The angular momentum of the block in this example changed only in
magnitude and not in direction, since x and L happened to be along the
same line. In the next example we return to the conical pendulum to
study a case in which the angular momentum is constant in magnitude
but changes direction due to an applied torque.

Example 6.6 Torque on the Conical Pendulum

In Example 6.2, we calculated the angular momentum of a conical pen-
dulum about two different origins. Now we shall complete the analysis
by showing that the relation x = dL/dt is satisfied.

The sketch illustrates the forces on the bob. T is the tension in the
string. For uniform circular motion there is no vertical acceleration, and
consequently

I cos a

T cos a — Mg = 0. 1

The total force F on the bob is radially inward: F = — Tsinar. The
torque on M about A is

*A = rA X F
= 0,

since rA and F are both in the f direction. Hence

dt

and we have the result

LA = constant

as we already know from Example 6.2.
The problem looks entirely different if we take the origin at B. The

torque XB is

*B = rB X F.

Hence

\xB\ = I cos aF = I cos a T sin a

= MgfZ sin a,

where we have used Eq. (1), T cos a = Mg. The direction of
gential to the line of motion of M:

XB = Mgl sin <*0,

where 0 is the unit tangential vector in the plane of motion.

is tan-
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LM + At)

LrA6

Our problem is to show that the relation

dLB

is satisfied. From Example 6.2, we know that LB has constant magnitude
Mlrco. As the diagram at left shows, LB has a vertical component
Lz = Mlrco sin a and a horizontal radial component Lr = Af̂ roj cos a.
Writing LB = Lz + Lr, we see that L* is constant, as we expect, since xB

has no vertical component. Lr is not constant; it changes direction as the
bob swings around. However, the magnitude of Lr is constant. We
encountered such a situation in Sec. 1.8, where we showed that the only
way a vector A of constant magnitude can change in time is to rotate, and
that if its instantaneous rate of rotation is dB/dt, then \dA/dt\ = A dd/dt.
We can employ this relation directly to obtain

dt
= Lrco.

However, since we shall invoke this result frequently, let us take a moment
to rederive it geometrically.

The vector diagrams show Lr at some time t and at i + At. During
the interval At, the bob swings through angle Ad = co At, and Lr rotates
through the same angle. The magnitude of the vector difference ALr =
Lr(t + AO — Lr(0 is given approximately by

|ALr| « LrA6.

In the limit A£ —> 0, we have

dLr = L d$
dt r dt

= Lrco.

Since Lr = Mlrco cos a, we have

—- = Mlrco2 cos a.
dt

Mrco2 is the radial force, T sin a, and since T cos a = Mg, we have

dLr .
= Mgl sin a,

dt
which agrees with the magnitude of XB from Eq. (2). Furthermore, as
the vector drawings indicate, dLr/dt lies in the tangential direction, parallel
to XB, as we expect.
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Another way to calculate dLB/dt is to write LB in vector form and then
differentiate:

LB = (Mlra) sin a)k + (Mlroo cos a)r.

dlB „,, dr
= Mtrco cos a —

dt dt
= Mlro)2 cos aft,

where we have used dr/dt = co8.
It is important to be able to visualize angular momentum as a vector

which can rotate in space. This type of reasoning occurs often in analyz-
ing the motion of rigid bodies; we shall find it particularly helpful in
understanding gyroscope motion in Chap. 7.

Example 6.7 Torque due to Gravity

We often encounter systems in which there is a torque exerted by gravity.
Examples include a pendulum, a child's top, and a falling chimney. In
the usual case of a uniform gravitational field, the torque on a body
about any point is R X W, where R is a vector from the point to the
center of mass and W is the weight. Here is the proof.

The problem is to find the torque on a body of mass M about origin
A when the applied force is due to a uniform gravitational field g. We
can regard the body as a collection of particles. The torque x7 on the
jth particle is

?y = r; X myg,

where r7 is the position vector of the jth particle from origin A, and ray
is its mass.

The total torque is

, /

= (Zmjrj) X g.

By definition of center of mass,

Sm,T,- = MR,

where R is the position vector of the center of mass. Hence

x = MR x g

= R X l g

= RX W.

A corollary to this result is that in order to balance an object, the
pivot point must be at the center of mass.
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6.4 Angular Momentum and Fixed Axis Rotation

The most prominent application of angular momentum in classical
mechanics is to the analysis of the motion of rigid bodies. The
general case of rigid body motion involves free rotation about any
axis—for instance, the motion of a baseball bat flung spinning and
tumbling into the air. Analysis of the general case involves a
number of mathematical complexities which we are going to post-
pone for a chapter, and in this chapter we restrict ourselves to a
special, but important, case—rotation about a fixed axis. By fixed
axis we mean that the direction of the axis of rotation is always
along the same line; the axi$ itself may translate. For example,
a car wheel attached to an axle undergoes fixed axis rotation as
long as the car drives straight ahead. If the car turns, the wheel
must rotate about a vertical axis while simultaneously spinning on
the axle; the motion is no longer fixed axis rotation. If the wheel
flies off the axle and wobbles down the road, the motion is defi-
nitely not rotation about a fixed axis.

We can choose the axis of rotation to be in the z direction, with-
out loss of generality. The rotating object can be a wheel or a
baseball bat, or anything we choose, the only restriction being
that it is rigid—which is to say that its shape does not change as it
rotates.

When a rigid body rotates about an axis, every particle in the
body remains at a fixed distance from the axis. If we choose a
coordinate system with its origin lying on the axis, then for each
particle in the body, |r| = constant. The only way that r can
change while \x\ remains constant is for the velocity to be perpen-
dicular to r. Hence, for a body rotating about the z axis,

w = n 6.4

where p3 is the perpendicular distance from the axis of rotation to
particle ray of the rigid body and py is the corresponding vector.
o> is the rate of rotation, or angular velocity. Since the axis of
rotation lies in the z direction, we have p3 = (x3

2 + y3
2)K [In this

chapter and the next we shall use the symbol p to denote perpen-
dicular distance to the axis of rotation. Note that r stands for
the distance to the origin: r = (x2 + y2 + z2)K]

The angular momentum of the^th particle of the body, L(j), is.

LO') = r3 x mjij.
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In this chapter we are concerned only with Lz, the component of
angular momentum along the axis of rotation. Since vy lies in
the xy plane,

Lz(j) = mftj X (distance to z axis) =

Using Eq. (6.4), vj = copy, we have

Lz(j) =

The z component of the total angular momentum of the body Lz

is the sum of the individual z components:

L, = % L.(j)
3

), 6.5

where the sum is over all particles of the body. We have taken
co to be constant throughout the body; can you see why this must
be so?

Equation (6.5) can be written as

Lz = /co, 6.6

where

/ = 2, mjPj2- 6.7
j

/ i s a geometrical quantity called the moment of inertia, /depends
on both the distribution of mass in the body and the location of the
axis of rotation. (We shall give a more general definition for /
in the next chapter when we talk about unrestricted rigid body
motion.) For continuously distributed matter we can replace the
sum over mass particles by an integral over differential mass ele-
ments. In this case

X mjPj2 -> fp2 dm,
j

and
/ = fp2 dm

= I(x2 + y2) dm.

To evaluate such an integral we generally replace the mass ele-
ment dm by the product of the density (mass per unit volume) w
at the position of dm and the volume dV occupied by dm:

dm = iv dV.
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(Often p is used to denote density, but that would cause confusion
here.) We can write

I = fp2dm

= I(x2 + y2)iv dV.

For simple shapes with a high degree of symmetry, calculation of
the moment of inertia is straightforward, as the following examples
show.

dm = \ds

Example 6.8 Moments of Inertia of Some Simple Objects

a. UNIFORM THIN HOOP OF MASS M AND RADIUS R, AXIS THROUGH
THE CENTER AND PERPENDICULAR TO THE PLANE OF THE HOOP
The moment of inertia about the axis is given by

M

I = /p2 dm.

Since the hoop is thin, dm = \ds, where X = M/2wR is the mass per
unit length of the hoop. All points on the hoop are distance R from the
axis so that p = R, and we have

R2\ ds

= MR2.

2irR

0

b. UNIFORM DISK OF MASS M, RADIUS R, AXIS THROUGH THE CENTER
AND PERPENDICULAR TO THE PLANE OF THE DISK
We can subdivide the disk into a series of thin hoops with radius p
width dp, and moment of inertia dl. Then I = J dl.

The area of one of the thin hoops is dA = 2-wp dp, and its mass is

dm = M — =
A

_ 2Mp dp
R2

dl = p2 dm =

Mlirpdp

2Mp3 dp

R2

R 2Mp3 dp

R2

= - MR2.
2
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pde

pdpdd

M
1

L/2
1

M

Let us also solve this problem by double integration to illustrate the
most general approach.

I = fp2 dm

= fp2a dS,

where a is the mass per unit area. For the uniform disk, a = M/irR2,
Polar coordinates are the obvious choice. In plane polar coordinates,

dS = p dp dB.

Then

I f p2 adS

_ (2M\ fR
pzdp

as before.
c. UNIFORM THIN STICK OF MASS M, LENGTH L, AXIS THROUGH
THE MIDPOINT AND PERPENDICULAR TO THE STICK

+ L/2

L/2-I-
M r

x2 dm

+L/2
-L/2

x2 dx

x3

L 3
-hML

+ L/2

-L/2

d. UNIFORM THIN STICK, AXIS AT ONE END AND PERPENDICULAR TO
THE STICK

MM [L

-TIO xdx

e. UNIFORM SPHERE OF MASS M, RADIUS R, AXIS THROUGH CENTER
We quote this result without proof—perhapsyou can derive it foryourself.
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Example 6.9 The Parallel Axis Theorem

This handy theorem tells us / , the moment of inertia about any axis,
provided that we know 70, the moment of inertia about a parallel axis
through the center of mass. If the mass of the body is M and the dis-
tance between the axes is I, the theorem states that

I = 7o + Ml2.

To prove this, consider the moment of inertia of the body about an
axis which we choose to have lie in the z direction. The vector from the
z axis to particle j is

py = Xj\ + yfi,

and

If the center of mass is at R = X\ + Y\ + Zk, the vector perpen-
dicular from the z axis to the center of mass is

R± = Xi + Fj.

If the vector from the axis through the center of mass to particle j is
Py, then the moment of inertia about the center of mass is

7o = Smy P;2.

From the diagram we see that

py = Py + R±.

so that

y + R±)2

= Zmtp'/' + 2P; • R± + R^).

The middle term vanishes, since

y(py - R±) = M(R± - Rx)

= 0.

If we designate the magnitude of R± by I, then

I = Io + Ml2.

For example, in Example 6.8c we showed that the moment of inertia of a
stick about its midpoint is ML2/\2. The moment of inertia about its
end, which is L/2 away from the center of mass, is therefore

ML2

12
ML2

+ M[-

which is the result we found in Example 6.8d.
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Similarly, the moment of inertia of a disk about an axis at the rim, per-
pendicular to the plane of the disk, is

Ia _

6.5 Dynamics of Pure Rotation about an Axis

In Chap. 3 we showed that the motion of a system of particles is
simple to describe if we distinguish between external forces and
internal forces acting on the particles. The internal forces cancel
by Newton's third law, and the momentum changes only because
of external forces. This leads to the law of conservation of
momentum: the momentum of an isolated system is constant.
In describing rotational motion we are tempted to follow the
same procedure and to distinguish between external and internal
torques. Unfortunately, there is no way to prove from Newton's
laws that the internal torques add to zero. However, it is an
experimental fact that they always do cancel, since the angular
momentum of an isolated system has never been observed to
change. We shall discuss this more fully in Sec. 7.5 and for the
remainder of this chapter simply assume that only external tor-
ques change the angular momentum of a rigid body.

In this section we consider fixed axis rotation with no translation
of the axis, as, for instance, the motion of a door on its hinges or
the spinning of a fan blade. Motion like this, where there is an
axis of rotation at rest, is called pure rotation. Pure rotation is
important because it is simple and because it is frequently
encountered.

Consider a body rotating with angular velocity co about the z
axis. From Eq. (6.6) the z component of angular momentum is

U = /co.

Since T = dL/dt, where T is the external torque, we have

doi

dt

= /«,
where a = du/dt is called the angular acceleration. In this chap-
ter we are concerned with rotation only about the z axis, so we
drop the subscript z and write

= la. 6.8
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Equation (6.8) is reminiscent of F = ma, and in fact there is a
close analogy between linear and rotational motion. We can
develop this further by evaluating the kinetic energy of a body
undergoing pure rotation:

where we have used Vj = pyw and / =
The method of handling problems involving rotation under

applied torques is a straightforward extension of the familiar
procedure for treating translational motion under applied forces,
as the following example illustrates.

Example 6.10 Atwood's Machine with a Massive Pulley

W/////////////^^^^ The problem is to find the acceleration a for the arrangement shown in
the sketch. The effect of the pulley is to be included.

Force diagrams for the three masses are shown below left. The
points of application of the forces on the pulley are shown; this is neces-
sary whenever we need to calculate torques. The pulley evidently under-
goes pure rotation about its axle, so we take the axis of rotation to be
the axle.

The equations of motion are

Wi - Tx = Mxa

T2- W2 = M2a
r = T,R - T2R = la

Pulley

Masses

N - - T2 - Wp = 0
Note that in the torque equation, a must be positive counterclockwise to
correspond to our convention that torque out of the paper is positive.

N is the force on the axle, and the last equation simply assures that
the pulley does not fall. Since we don't need to know N, it does not
contribute to the solution.

There is a constraint relating a and a, assuming that the rope does
not slip. The velocity of the rope is the velocity of a point on the surface
of the wheel, v = ooR, from which it follows that

a = aR.

We can now eliminate Tlf T2, and a;

W, - W2 - (7\ - T2) = (Mx + M2)a

T T IOL la

Wi - W2 - ^ =
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/ =

If the pulley is a simple disk, we have

MVR2

and it follows that

(Mi - M2)g
a =

Ml Mp/2

The pulley increases the total inertial mass of the system, but in com-
parison with the hanging weights, the effective mass of the pulley is only
one-half its real mass.

6.6 The Physical Pendulum

A mass hanging from a string is a simple pendulum if we assume
that the mass has negligible size and the mass of the string is
zero. We shall review its behavior as an introduction to the more
realistic object, the physical pendulum, for which we do not need
to make these assumptions.

v//////////////////////////,

The Simple Pendulum

At the left is a sketch of a simple pendulum and the force dia-
gram. The tangential force is — IF sin </>, and we obtain

ml4> = — W sin 0.

(Incidentally, we get the same result by considering pure rotation
about the point of suspension: / = ml2, a = 4>, and r = — Wl sin <£,
so ml24> = —Wl sin <t>.) We can rewrite the equation of motion as

1$ + g sin <f> = 0.

This equation cannot be solved in terms of familiar functions.
However, if the pendulum never swings far from the vertical, then
<t> « 1, and we can use the approximation sin <t> ~ </>. Then

l$ + g<t> = 0.

This is the equation for simple harmonic motion. (See Example
2.14.) The solution is </> = A sin ut + B cos ut, where co = ^/~gjl
and A and B are constants. If the pendulum starts from rest at
angle <t>0, the solution is

(f> = <j>0 COS oot.
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The motion is periodic, which means it occurs identically over and
over again. The period T, the time between successive repeti-
tions of the motion, is given by coT = 2T, or

T =
2TT

The maximum angle <p0 is called the amplitude of the motion.
The period is independent of the amplitude, which is why the
pendulum is so well suited to regulating the rate of a clock. How-
ever, this feature of the motion is a consequence of the approxi-
mation sin <t>^ <f>. The exact solution, which is developed in
Note 6.2 at the end of the chapter, shows that the period lengthens
slightly with increasing amplitude. The following example illus-
trates the consequence of this.

Example 6.11 Grandfather's Clock

As shown in Eq. (7) of Note 6.2, for small amplitudes the period of a pen-
dulum is given by

T = Te<l +

where

+ • • • ) • 1

For 0o ~ 0 we have our previous result, T = 2ir \/l/g. The correction
term, TV<£O2 is surprisingly small: Consider a grandfather's clock with
To = 2 s and Z « 1 m. If the pendulum swings 4 cm to either side, then
0o = 4 X 10~2 rad and the correction term is 0O

2/16 = 10~4. This by
itself is of no consequence, since the length of the pendulum can be
adjusted to make the clock run at any desired rate. However, the ampli-
tude may vary slightly due to friction and other effects. Suppose that
the amplitude changes by an amount d<\>. Taking differentials of Eq.
(1) gives

dT = iTo<t>o d<t>.

The fractional change in T is
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If the amplitude changes by 10 percent, then d<t> = 0.1<£0 = 4 X 10~3 rad,
and dT/To = 2 X 10~5, giving an error of about 2 seconds per day.

The Physical Pendulum

Now let us turn to the physical pendulum such as the one in the
sketch. The swinging object can have any shape. Its mass is
M, and its center of mass is at distance I from the pivot. One
other quantity we need is the moment of inertia about the pivot,
Ia. The motion is pure rotation about the pivot. Choosing the
axis of rotation through the pivot, we find that the only torque
is that due to gravity, and we have

-IWsln <j> = Ia$.

Making the small angle approximation,

Ia4> + Mlg<t> = 0.

This is again the equation of simple harmonic motion with the
solution

<j> = A cos o)t + B sin a>t,

where w
We can write this result in a simpler form if we introduce the

radius of gyration. If the moment of inertia of an object about its
center of mass is 70, the radius of gyration k is defined as

k = ^— or Jo = Mk\

For instance, for a hoop of radius R,k = R; for a disk, k = \ \ R\
and for a solid sphere, A; = V f # .

By the parallel axis theorem we have

Ia = Jo + MZ2

+
so that

+ 1 2

The simple pendulum corresponds to k = 0, and in this case we

obtain <a = V^ /7 , as before.
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Example 6.12 Kater's Pendulum

L

Knife
edge

Between the sixteenth and twentieth centuries, the most accurate mea-
surements of g were obtained from experiments with pendulums. The
method is attractive because the only quantities needed are the period
of the pendulum, which can be determined to great accuracy by counting
many swings, and the pendulum's dimensions. For very precise mea-
surements, the limiting feature turns out to be the precision with which
the center of mass of the pendulum and its radius of gyration can be
determined. A clever invention, named after the nineteenth century
English physicist, surveyor, and inventor Henry Kater, overcomes this
difficulty.

Kater's pendulum has two knife edges; the pendulum can be sus-
pended from either. If the knife edges are distances IA and lB from
the center of mass, then the period for small oscillations from each of
these is, respectively,

TB =

IA or IB is adjusted until the periods are identical: TA = TB = T. We
can then eliminate T and solve for k2:

k2 =
- MA

IB-IA

Then

T = 2TT

or

g = 4TT2

The beauty of Kater's invention is that the only geometrical quantity
needed is IA + IB, the distance between the knife edges, which can be
measured to great accuracy. The position of the center of mass need
not be known.
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Example 6.13 The Doorstop

F"

I Center I
f of mass T

The banging of a door against its stop can tear loose the hinges. How-
ever, by the proper choice of I, the impact forces on the hinge can be
made to vanish.

The forces on the door during impact are Fd, due to the stop, and F'
and F" due to the hinge. F" is the small radial force which provides
the centripetal acceleration of the swinging door. Ff and Fd are the
large impact forces which bring the door to rest when it bangs against
the stop. The force on the hinges is equal and opposite to Ff and F"
To minimize the stress on the hinges, we must make Fr as small as
possible.

To derive an expression for F\ we shall consider in turn the angular
momentum of the door about the hinges and the linear momentum of
the center of mass.

Since dL = rdt, we have

^filial ~~ Anitial = / T dt.

The initial angular momentum of the door is Io)0, where I is the moment
of inertia about the hinges. Since the door comes to rest, Lfinal = 0.
The torque on the door during the collision is r = —lFd, and we obtain

Iooo = I / Fd dt, 1

where the integral is over the duration of the collision.
The center of mass motion obeys

Pfinal ~~ f Fdt,

where F is the total force. The momentum in the y direction immedi-
ately before the collision is MVy = Ml'coo, where /' is the distance from
the hinge to the center of mass of the door. Pfinai = 0, and the y com-
ponent of F is Fy = - ( /? ' + Fd). Hence,

= / + Fd) dt. 2

According to Eq. (1), fFd dt = Iwo/l, and substituting this in Eq. (2) gives

J F'dt = \MV - -J coo.

By choosing

Ml'

the impact force is made zero. If the door is uniform, and of width w,
then / = Mw2/3 and Z' = w/2. In this case I = fw.
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Incidentally, the stop must be at the height of the center of mass
rather than at floor level. Otherwise the impact forces will not be iden-
tic I on the two hinges and the door will tend to rotate about a horizontal
axis, an effect we have not taken into account.

The distance / specified by Eq. (3) is called the center of percussion.
In batting a baseball it is important to hit the ball at the bat's center of
percussion to avoid a reaction on the batter's hands and a painful sting.

6.7 Motion Involving Both Translation and Rotation

Often translation and rotation occur simultaneously, as in the case
of a rolling drum. There is no obvious axis as there was in Sec.
6.5 when we analyzed pure rotation, and the problem seems
confusing until we recall the theorem in Sec. 6.1—that one pos-
sible way to describe a general motion is by a translation of the
center of mass plus a rotation about the center of mass. By
using center of mass coordinates we will find it a straightforward
matter to obtain simple expressions for both the angular momen-
tum and the torque and to find the dynamical equation connecting
them.

As before, we shall consider only motion for which the axis of
rotation remains parallel to the z axis. We shall show that Lz,
the z component of the angular momentum of the body, can be
written as the sum of two terms. Lz is the angular momentum
70co due to rotation of the body about its center of mass, plus the
angular momentum (R x MV)Z due to motion of the center of
mass with respect to the origin of the inertial coordinate system:

Lz = + (R x IV),

where R is the position vector of the center of mass and V = R.
To find the angular momentum, we start by considering the

body to be an aggregation of N particles with masses m3{j = 1,
. . . , N) and position vectors 17 with respect to an inertial coor-
dinate system. The angular momentum of the body can be
written

The center of mass of the body has position vector R:

6.9

6.10
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where M is the total mass. The center of mass coordinates x]
can be introduced as we did in Sec. 3.3:

Eliminating x3 from Eq. (6.9) gives

L = 2(ry X ntjYj)

= 2(R + I-;.) x my(R + r;.)

= R X 2rayR + Znt/j X R + R X 2myfy + SmyrJ X rj.

This expression looks cumbersome, but we can show that the
middle two terms are identically zero and that the first and last
terms have simple physical interpretations. Starting with the
second term, we have

Zrayi-y = 2my(ry — R)

= Smyry — MR

= 0.

by Eq. (6.10). The third term is also zero; since Smyry is identi-
cally zero, its time derivative ZnijXj = 0 as well.

The first term is

R x ZrayR = R X MR
= R X MV,

where V = R is the velocity of the center of mass with respect to
the inertial system. The expression for L then becomes

L = R x MV + SrJ X m/j. 6.11

The first term of Eq. (6.11) represents the angular momentum
due to the center of mass motion. The second term represents
angular momentum due to motion around the center of mass.
The only way for the particles of a rigid body to move with respect
to the center of mass is for the body as a whole to rotate. We
shall evaluate the second term for an arbitrary axis of rotation in
the next chapter. In this chapter, however, we are restricting
ourselves to fixed axis rotation about the z axis. Taking the z
component of Eq. (6.11) gives

U = (R X MV), + (Sr; x m3rj)z. 6.12
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Center
of mass

Spin

motion

For rotation about the z axis, the second term (Sr, x myry), can
be simplified by recognizing that we dealt with this kind of expres-
sion before, in Sec. 6.4. The body has angular velocity cok about
its center of mass, and since the origin of r] is the center of mass,
the second term is identical in form to the case of pure rotation
we treated in Sec. 6.4.

where py is the vector to my perpendicular from an axis in the z
direction through the center of mass. Io = ^rrtjPj2 is the moment
of inertia of the body about this axis.

Collecting our results, we have

Lz = 70co + (R x I V ) , 6.13

We have proven the result stated at the beginning of this sec-
tion. The angular momentum of a rigid object is the sum of the
angular momentum about its center of mass and the angular
momentum of the center of mass about the origin. These two
terms are often referred to as the spin and orbital terms, respec-
tively. The earth illustrates them nicely. The daily rotation of
the earth about its axis gives rise to the earth's spin angular
momentum, and its annual revolution about the sun gives rise to
the earth's orbital angular momentum about the sun. An impor-
tant feature of the spin angular momentum is that it is indepen-
dent of the coordinate system. In this sense it is intrinsic to the
body; no change in coordinate system can eliminate spin, whereas
orbital angular momentum disappears if the origin is along the
line of motion.

It should be kept in mind that Eq. (6.13) is valid even when the
center of mass is accelerating, since L was calculated with respect
to an inertial coordinate system.

Example 6.14 Angular Momentum of a Rolling Wheel

In this example we apply Eq. (6.13) to the calculation of the angular
momentum of a uniform wheel of mass M and radius b which rolls uni-
formly and without slipping. The moment of inertia of the wheel about
its center of mass is 70 = iMb2 and its angular momentum about the
center of mass is
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Lo is parallel to the z axis. The minus sign indicates that Lo is directed
into the paper, in the negative z direction.

If we calculate the angular momentum of the center of mass of the
wheel with respect to the origin, we have

(RX MY), = -MbV.

The total angular momentum about the origin is then

L, = -iMb2u -MbV

- Mb2a>

where we have used the result V = bco, which holds for a wheel that
rolls without slipping.

Torque also naturally divides Itself into two components. The
torque on a body is

<c = 2ry X fy

= 2(rJ + R) X fy

= 2(r; X fy) + R X Ff 6.14

where F = Zfy is the total applied force. The first term in Eq.
(6.14) is the torque about the center of mass due to the various
external forces, and the second term is the torque due to the
total external force acting at the center of mass. For fixed axis
rotation o> = a>k, and Eq. (6.14) can be written

rz = ro + (R X F).f 6.15

where r0 is the z component of the torque about the center of
mass. But from Eq. (6.13) for Lz we have

= loot + (R x Ma),. 6.16

Using r2 = dLM/dt, Eq. (6.15) and (6.16) yield

r0 + (R X F), = Ioa + (R X Ma)z

= Ioa + (R X F)fl

since F = Ma. Hence,

ro = Ioa. 6.17

According to Eq. (6.17), rotational motion about the center of mass
depends only on the torque about the center of mass, independent
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of the translational motion. In other words, Eq. (6.17) is correct
even if the axis is accelerating.

These relations will seem quite natural when we use them.
Before doing sof we complete the development by examining the
kinetic energy.

K =
V)2

,py • V

= i/o"2 + iMV2 6.18

The first term corresponds to the kinetic energy of spin, while
the last term arises from the orbital center of mass motion.

Here is a summary of these results.

TABLE 6.1
Summary of Dynamical Formulas for Fixed Axis Motion

a Pure rotation about an axis—no translation.

L = /«
T = la

K = i/co2

b Rotation and translation (subscript 0 refers to center of mass)

Lz = ho) + (R X MY),

TZ = ro + (R X F),

To = Ioa

K = i/oco2 + iMV2

Example 6.15 Disk on Ice

A disk of mass M and radius b is pulled with constant force F by a thin
tape wound around its circumference. The disk slides on ice without
friction. What is its motion?

We shall solve the problem by two different methods.

METHOD 1
Analyzing the motion about the center of mass we have

TO = bF
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or
bF

a = —•

u
The acceleration of the center of mass is

F

METHOD 2
We choose a coordinate system whose origin A is along the line of F.
The torque about A is, from Table 6.16,

TZ = To + (R X F),

= bF - bF = 0.

The torque is zero, as we expect, and angular momentum about the origin
is conserved. The angular momentum about A is, from Table 6.16,

Lg = ho> + (R X MY),

= /oco - bMV.

Since dLz/dt = 0, we have

0 = Ioa — bMa

or

bMa bF

as before.

Example 6.16 Drum Rolling down a Plane

A uniform drum of radius 6 and mass M rolls without slipping down a
plane inclined at angle 6. Find its acceleration along the plane. The
moment of inertia of the drum about its axis is 70 = Mb2/2.

METHOD 1
The forces acting on the drum are shown in the diagram. / is the force
of friction. The translation of the center of mass along the plane is
given by

If sin 0 -f = Ma

and the rotation about the center of mass by

6/ = Ioa.

For rolling without slipping, we also have

a = ba.
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If we eliminate /, we obtain

IF sin 6 - h- = Ma.

Using 7o = Mb2/2, and a = a/b, we obtain

Mg s\n 6 - — = Ma,
2

or

a = %g sin 6.

METHOD 2
Choose a coordinate system whose origin A is on the plane. The torque
about A is

- TF cos 6)

rs = TO + (R X F)2

= - # ± / + R±(f ~ W sin 0)
= -bW sin 6,

since R± = b and IF cos 6 = N. The angular momentum about A is

L, = -/oco + (R X MV),

where (R X M\/)z = —Mb2o), as in Example 6.14. Since TZ = dLz/dt, we
have

6TFsin (9 = - Mb2a,
2

or

2 IF . 2^ sin (9
a = sin 6 = -

3ilf6 3 6

For rolling without slipping, a = ba and

a = ig sin ^.
Note that the analysis would have been even more direct if we had

chosen the origin at the point of contact. In this case we can calculate
TZ directly from

rz = S(ry X f,)..

Since f and N act at the origin, the torque is due only to W, and

r2 = -bW s\n d

as we obtained above. With this origin, however, the unknown forces
f and N do not appear.
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The Work-energy Theorem

In Chap. 4 we derived the work-energy theorem for a particle

Kb — Ka = Wba

where

Wba = £* F • dr.

We can generalize this for a rigid body and show that the work-
energy theorem divides naturally into two parts, one dealing with
translational energy and one dealing with rotational energy.

To derive the translational part, we start with the equation of
motion for the center of mass.

^ dt

The work done when the center of mass is displaced by
dR = V dt is

F . dR = M ^ • V dt
at

= dQMV2).

Integrating, we obtain

*6 F . dR = WVh
2 - iMVa2. 6.19

Now let us evaluate the work associated with the rotational
kinetic energy. The equation of motion for fixed axis rotation
about the center of mass is

To = IQOL

dm

Rotational kinetic energy has the form |/0co2, which suggests that
we multiply the equation of motion by dd = co dt:

do)
TOdd — /o — co dt

dt



268 ANGULAR MOMENTUM AND FIXED AXIS ROTATION

Integrating, we find that

f6b
Tode = |70co6

2 -
J da

6.20

The integral on the left evidently represents the work done by the
applied torque.

The general work-energy theorem for a rigid body is therefore

Kb — Ka = W bai

where K = iMV2 + i/0co2 and Wba is the total work done on the
body as it moves from position a to position b. We see from Eqs.
(6.19) and (6.20) that the work-energy theorem is composed of
two independent theorems, one for translation and one for rota-
tion. In many problems these theorems can be applied sepa-
rately, as the following example shows.

Example 6.17 Drum Rolling down a Plane: Energy Method

Consider once again a uniform drum of radius b, mass M, and moment
of inertia 70 = Mb2/2 on a plane of angle 0. If the drum starts from
rest and rolls without slipping, find the speed of its center of mass, V,
after it has descended a height h.

The forces on the drum are shown in the sketch. The energy equa-
tion for the translational motion is

F . dr = iMVb
2 -

or

where I = A/sin /3 is the displacement of the center of mass as the drum
h \ descends height h.

i The energy equation for the rotational motion is

fb$
or

where 0 is the rotation angle about the center of mass. For rolling
without slipping, bd = I. Hence,

fl =

We also have co = V/b, so that
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Using this in Eq. (1) to eliminate / gives

- ( - + M ) V2

KM

An interesting point in this example is that the friction force is not
dissipative. From Eq. (1), friction decreases the translational energy by
an amount //. However, from Eq. (2), the torque exerted by friction
increases the rotational energy by the same amount. In this motion,
friction simply transforms mechanical energy from one mode to another.
If slipping occurs, this is no longer the case and some of the mechanical
energy is dissipated as heat.

We conclude this section with an example involving constraints
which is easily handled by energy methods.

Example 6.18 The Falling Stick

A stick of length I and mass M, initially upright on a frictionless table,
starts falling. The problem is to find the speed of the center of mass
as a function of position.

The key lies in realizing that since there are no horizontal forces, the
center of mass must fall straight down. Since we must find velocity as
a function of position, it is natural to apply energy methods.

The sketch shows the stick after it has rotated through angle 6 and the
center of mass has fallen distance y. The initial energy is

E = Ko+Uo
_ Mgl

2~

The kinetic energy at a later time is

K = i/o0
2 + iMy2

and the corresponding potential energy is

U = Mg(H
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Since there are no dissipative forces, mechanical energy is conserved
and K + U = Ko + Uo = Mgl/2. Hence,

iMy2 + ih62 + Mg (- - y) = Mg -•

We can eliminate 0 by turning to the constraint equation. From the
sketch we see that

y = - (1 - cos 0).

Hence,

y = - sin 0 0

and

ls\ndy

Since 70 = M(Z2/12), we obtain

ry2 +

or
^ ( n b ^ + ̂ Ki-")"^

[1 + 1/(3 sin2 0)]
6gy s in2 6 ~YA

V

6.8 The Bohr Atom

We conclude this chapter with an historical account of the Bohr
theory of the hydrogen atom. Although this material represents
an interesting application of the principles we have encountered,
it is not essential to our development of classical mechanics.

The Bohr theory of the hydrogen atom is the major link between
classical physics and quantum mechanics. We present here a
brief outline of the Bohr theory as an exciting example of the appli-
cation of concepts we have studied, particularly energy and angu-
lar momentum. Our description is similar, though not identical,
to Bohr's original paper which he published in 1913 at the age of
26. Although this brief account cannot deal adequately with the
background to the Bohr theory, it may give some of the flavor of
one of the great chapters in physics.
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The development of optical spectroscopy in the nineteenth
century made available a great deal of experimental data on the
structure of atoms. The light from atoms excited by an electric
discharge is radiated only at certain discrete wavelengths char-
acteristic of the element involved, and the last half of the nine-
teenth century saw tremendous effort in the measurement and
interpretation of these line spectra. The wavelength measure-
ments represented a notable experimental achievement; some
were made to an accuracy of better than a part in a million.
Interpretation, on the other hand, was a dismal failure; aside
from certain empirical rules which gave no insight into the under-
lying physical laws, there was no progress.

The most celebrated empirical formula was discovered in 1886
by the Swiss high school art teacher Joseph Balmer. He found
that the wavelengths of the optical spectrum of atomic hydrogen
are given within experimental accuracy by the formula

^ Z ) n = 3, 4, 5

where X is the wavelength of a particular spectral line, and Ry is
a constant, named the Rydberg constant after the Swedish spec-
troscopist who modified Balmer's formula to apply to certain other
spectra. Numerically, Ry = 109,700 cm"1. (In this section we
shall follow the tradition of atomic physics by using cgs units.)

Not only did Balmer's formula account for the known lines of
hydrogen, n = 3 through n = 6, it predicted other lines, n = 7,
8, . . . , which were quickly found. Furthermore, Balmer sug-
gested that there might be other lines given by

\ = Ry ( J m = 3 , 4 , 5 , . . .
\m2 n2/

n = m + 1, m + 2, . . . 6.21

and these, too, were found. (Balmer overlooked the series with
m = 1, lying in the ultraviolet, which was found in 1916.)

Undoubtedly the Balmer formula contained the key to the struc-
ture of hydrogen. Yet no one was able to create a model for an
atom which could radiate such a spectrum.

Bohr was familiar with the Balmer formula. He was also
familiar with ideas of atomic structure current at the time, ideas
based on the experimental researches of J. J. Thomson and
Ernest Rutherford. Thomson, working in the Cavendish physi-
cal laboratory at Cambridge University, surmised the existence of
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electrons in 1897. This first indication of the divisibility of the
atom stimulated further work, and in 1911 Ernest Rutherford's1

alpha scattering experiments at the University of Manchester
showed that atoms have a charged core which contains most of
the mass. Each atom has an integral number of electrons and
an equal number of positive charges on the massive core.

A further development in physics which played an essential
role in Bohr's theory was Einstein's theory of the photoelectric
effect. In 1905, the same year that he published the special
theory of relativity, Einstein proposed that the energy transmitted
by light consists of discrete "packages," or quanta. The quan-
tum of light is called a photon, and Einstein asserted that the
energy of a photon is E = hv, where v is the frequency of the
light and h = 6.62 X 10"27 erg • s is Planck's constant.2

Bohr made the following postulates:

1. Atoms cannot possess arbitrary amounts of energy but must
exist only in certain stationary states. While in a stationary state,
an atom does not radiate.

2. An atom can pass from one stationary state a to a lower state
by emitting a photon with energy Ea — Eb. The frequency of
the emitted photon is

6.22v
h

3. While in a stationary state, the motion of the atom is given
accurately by classical physics.

4. The angular momentum of the atom is nh/lir, where n is an
integer.

Assumption 1, the most drastic, was absolutely necessary to
account for the fact that atoms are stable. According to classical
theory, an orbiting electron would continuously lose energy by
radiation and spiral into the nucleus.

In view of the fact that assumption 1 breaks completely with
classical physics, assumption 3 hardly seems justified. Bohr
recognized this difficulty and justified the assumption on the
ground that the electrodynamical forces connected with the emis-
sion of radiation would be very small in comparison with the

1 Rutherford had earlier been a student of J. J. Thomson and in 1919 succeeded
Thomson as director of the Cavendish laboratory. Bohr in turn studied with
Rutherford while working out the Bohr theory.
2 Max Planck had introduced h in 1901 in his theory of radiation from hot bodies.
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electrostatic attraction of the charged particles. Possibly the
real reason that Bohr continued to apply classical physics to this
nonclassical situation was that he felt that at least some of the
fundamental concepts of classical physics should carry over into
the new physics, and that they should not be discarded until
proven to be unworkable.

Bohr did not utilize postulate 4, known as the quantization of
angular momentum, in his original work, although he pointed out
the possibility of doing so. It has become traditional to treat this
postulate as a fundamental assumption.

Let us apply these four postulates to hydrogen. The hydrogen
atom consists of a single electron of charge — e and mass ra0, and
a nucleus of charge +e and mass M. We assume that the mas-
sive nucleus is essentially at rest and that the electron is in a cir-
cular orbit of radius r with velocity v. The radial equation of
motion is

m0v
2 e2

= 7 b.c.6
r r2

where —e2/r2 is the attractive Coulomb force between the charges
The energy is

E = K + U = im0v
2 - - • 6.24

r

Equations (6.23) and (6.24) yield

1 P2

E=-±~ 6.25
2 r

By postulate 4, the angular momentum is nh/2ir, where n is an
integer. Labeling the orbit parameters by n, we have

nh
— = mornvn. 6.26
CK

Equations (6.26) and (6.23) yield

n2h2 1
rn = J 6.27

m0e
2 (2TT)2

and Eq. (6.25) gives

_ l ( 2 r ) W 6 2 8

2 nW



274 ANGULAR MOMENTUM AND FIXED AXIS ROTATION

If the electron makes a transition from state n to state m, the
emitted photon has frequency

En — Em

h

_ (2TT)_2 moe_4 / J ^ _ 1

2 hz \ r a 2 " n2
6.29

The wavelength of the radiation is given by

1 _ v

X ~ c

_ 2TT2 m 0 e 4

c hz 6.30

This is identical in form to the Balmer formula, Eq. 6.21. What
is even more impressive is that the numerical coefficients agree
extemely well; Bohr was able to calculate the Rydberg constant
from the fundamental atomic constants.

The Bohr theory, with its strong flavor of elementary classical
mechanics, formed an important bridge between classical physics
and present-day atomic theory. Although the Bohr theory was
unsuccessful in explaining more complicated atoms, the impetus
provided by Bohr's work led to the development of modern
quantum mechanics in the 1920s.

Note 6.1 Chasles' Theorem

Center of mass

Chasles' theorem asserts that is always possible to represent an arbi-
trary displacement of a rigid body by a translation of its center of mass
plus a rotation about its center of mass. This appendix is rather detailed
and an understanding of it is not necessary for following the development
of the text. However, the result is interesting and its proof provides a
nice exercise in vector methods for those interested.

To avoid algebraic complexities, we consider here a simple rigid body
consisting of two masses m\ and m2 joined by a rigid rod of length I.
The position vectors of nil and m2 are ri and r2, respectively, as shown
in the sketch. The position vector of the center of mass of the body is
R, and r[ and r2 are the position vectors of mi and m2 with respect to the
center of mass. The vectors r[ and rf

2 are back to back along the same
line.

In an arbitrary displacement of the body, m\ is displaced by dx\ and
m2 is displaced by dr2. Because the body is rigid, <hi and dr2 are not
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independent, and we begin our analysis by finding their relation. The
distance between m,\ and m2 is fixed and of length I. Therefore,

|ri — r2| = Z

(ri - r2) • (rx - r2) = l\ 1

Taking differentials of Eq. (I) ,1

(ri - r2) • (dri - dr2) = 0. 2

Equation (2) is the "rigid body condition" we seek. There are evidently
two ways of satisfying Eq. (2): either dt\ = dr2, or (dri — dr2) is perpen-
dicular to (ri — r2).

We now turn to the translational motion of the center of mass. By
definition,

R =
m2r2

. + rn2

Therefore, the displacement dR of the center of mass is

Ttiidri -f- ?H2dr2

dR = 3
mi + m2

If we subtract this translational displacement from dri and dr2, the resi-
dual displacements drx — dR and dr2 — dR should give a pure rotation
about the center of mass. Before investigating this point, we notice that
since
ri - R r[

the residual displacements are

drY - dR = dr[

dr2 — dR = drf
2.

Using Eq. (3) in Eq. (4) we have

dr[ = dri — dR

i + m2

and

dr'2 = dr2 — dR

+ m2/
Note that if dri =* dr2, the residual displacements dr[ and dr'2 are zero
and the rigid body translates without rotating.

1 Remember that d(A • A) = 2A • dA.
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**i

Center of mass dr[ • (r[ - r2) = dr[ • (rx — r2)

We must show that the residual displacements represent a pure
rotation about the center of mass to complete the theorem. The sketch
shows what a pure rotation would look like. First we show that dr[ and
drf

2 are perpendicular to the line r[ — r'2.

dr'

- ^r2) • (rj - r2)

= 0,

where we have used Eq. (5) and the rigid body condition, Eq. (2).
Similarly,

dr2 • (r[ — r2) = 0.

Finally, we require that the residual displacements correspond to rotation
through the same angle, A0. With reference to our sketch, this condi-
tion in vector form is

dv\ dx2

r[ r2

Keeping in mind that

by definition of center of mass, and using Eq. (5) and (6), we have

) (dri — dr2)

\pri\ + iu2/

t '

completing the proof.

- dr2)

Note 6.2 Pendulum Motion

The motion of a body moving under conservative forces can always be
solved formally by energy methods, and it is natural to use this approach
to find the motion of a pendulum.

The total energy of the pendulum is

E = K +U

= iml2<j>2 + mgy,

where I is the length of the pendulum and y is the vertical distance from
the lowest point. From the sketch we have y = 1(1 — cos </>).
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At the end of the swing, <f> = <j>0 and 0 = 0. The total energy is

E = mglQ. — cos 0O).

The energy equation is

iml2<j>2 + mgl(l — cos 0 ) = mglQ. — cos 0O),

d<t> kg
— = \— (cos 0 - cos 0O),
dt \ t
and

r d* = kg r dL
•I \ / c o s (h — cos thn V I J

V C O S 0 — COS <po

Before looking at the general solution, let us find the solution for the
case of small amplitudes. With the approximation cos <£ ̂  1 — £<£2,
we have

J A / * A/,*.* - A t \ l J

Let us integrate over one-fourth of the swing, from <\> = 0 to <j> = <t>o.
The time varies between t = 0 and t = T/4, where T is the period. We
have

/ .

00 d<t> _ \lg
o

or

arcsm , .
4

T =

as we found in the text.
To obtain a more accurate solution to Eq. (1), it is helpful to use the

identity cos <t> = 1 — 2 sin2 (0/2). Then

cos <t> - cos <t>0 = 2[sin2 (<£0/2) - sin2 (</>/2)]. 2

Introducing Eq. (2) in Eq. (1) gives

f d* = § r & 3
^ V ^ V s i n 2 (0o/2) - sin2 (0/2) ^ ^ y

Now let us change variables as follows:

sin (0/2)
sin w = • 4

sin (0o/2)
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As the pendulum swings through a cycle, <£ varies between — <£0 and
0o- At the same time, u varies between —T and +TT. If we let

K =

then

1
-cos
2

and

sin

sin

1°
n

<t>o

2 '

2
K

K

(

sin

cos

1 -

u

u du

sin2 u

Substituting Eqs. (4) and (5) in Eq. (3) gives

r du = h [ dt

J V l - K 2 s i n 2 w >* J

Let us take the integral over one period. The limits on u are 0 and
2TT, while t ranges from 0 to T. We have

The integral on the left is an elliptic integral: specifically, it is a com-
plete elliptic integral of the first kind. Values for this function are avail-
able from computed tables. However, for our purposes it is more con-
venient to expand the integrand:

(1 - K2 sin2 M ) - * = 1 + i K 2 sin2 u + • • •

and

du(l + iK2 sin2 u +

If <t>o « 1 , then sin2 (^0/2) « <j>0
2/4, and we have

T = 2TT yj- (1
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Problems

(X

6.1 a. Show that if the total linear momentum of a system of particles
is zero, the angular momentum of the system is the same about all
origins.

b. Show that if the total force on a system of particles is zero, the
torque on the system is the same about all origins.

6.2 A drum of mass MA and radius a rotates freely with initial angular
velocity co^(0). A second drum with mass MB and radius b > a is
mounted on the same axis and is at rest, although it is free to rotate.
A thin layer of sand with mass Ms is distributed on the inner surface of
the smaller drum. At t = 0, small perforations in the inner drum are
opened. The sand starts to fly out at a constant rate X and sticks to
the outer drum. Find the subsequent angular velocities of the two
drums uA and COB. Ignore the transit time of the sand.

Ans. clue. If \t = Mb and b = 2a, then coB = COA(0)/8

6.3 A ring of mass M and radius R lies on its side on a frictionless
table. It is pivoted to the table at its rim. A bug of mass m walks
around the ring with speed v, starting at the pivot. What is the rota-
tional velocity of the ring when the bug is (a) halfway around and (b)
back at the pivot.

Ans. clue, (a) If m = M, co = v/lR

6.4 A spaceship is sent to investigate a planet of mass M and radius R.
While hanging motionless in space at a distance 5R from the center of
the planet, the ship fires an instrument package with speed vQ, as shown
in the sketch. The package has mass m, which is much smaller than the
mass of the spaceship. For what angle 0 will the package just graze the
surface of the planet?

6.5 A 3,000-lb car is parked on a 30° slope, facing uphill. The center
of mass of the car is halfway between the front and rear wheels and is
2 ft above the ground. The wheels are 8 ft apart. Find the normal
force exerted by the road on the front wheels and on the rear wheels.

6.6 A man of mass M stands on a railroad car which is rounding an
unbanked turn of radius R at speed v. His center of mass is height L
above the car, and his feet are distance d apart. The man is facing the
direction of motion. How much weight is on each of his feet?

6.7 Find the moment of inertia of a thin sheet of mass M in the shape
of an equilateral triangle about an axis through a vertex, perpendicular
to the sheet. The length of each side is L.

6.8 Find the moment of inertia of a uniform sphere of mass M and
radius R about an axis through the center.

Ans. Jo = iMR2

6.9 A heavy uniform bar of mass M rests on top of two identical rollers
which are continuously turned rapidly in opposite directions, as shown.
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r°

2/

The centers of the rollers are a distance 21 apart. The coefficient of
friction between the bar and the roller surfaces is JJL, a constant indepen-
dent of the relative speed of the two surfaces.

Initially the bar is held at rest with its center at distance x0 from the
midpoint of the rollers. At time t = 0 it is released. Find the subse-
quent motion of the bar.

6.10 A cylinder of mass M and radius R is rotated in a uniform V groove
with constant angular velocity co. The coefficient of friction between the
cylinder and each surface is JU. What torque must be applied to the
cylinder to keep it rotating?

Ans. clue. If /x = 0.5f R = 0.1 mF W = 100 N, then r « 5.7 N m

6.11 A wheel is attached to a fixed shaft, and the system is free to rotate
without friction. To measure the moment of inertia of the wheel-shaft
system, a tape of negligible mass wrapped around the shaft is pulled
with a known constant force F. When a length L of tape has unwound,
the system is rotating with angular speed o)0. Find the moment of
inertia of the system, 70.

Ans. clue. If F = 10 N, L = 5 m, co0 = 0.5 rad/s, then 70 = 400 kg-m2

6.12 A pivoted beam has a mass Mi suspended from one end and an
Atwood's machine suspended from the other (see sketch at left below).
The frictionless pulley has negligible mass and dimension. Gravity is
directed downward, and M2 > Mz.

Find a relation between Mu M2, Mz, llt and l2 which will ensure that
the beam has no tendency to rotate just after the masses are released.

6.13 Mass m is attached to a post of radius R by a string (see right hand
sketch below). Initially it is distance r from the center of the post and is
moving tangentially with speed v0. In case (a) the string passes through
a hole in the center of the post at the top. The string is gradually short-
ened by drawing it through the hole. In case (b) the string wraps around
the outside of the post.

What quantities are conserved in each case? Find the final speed of
the mass when it hits the post for each case.

(a) (b)
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6.14 A uniform stick of mass M and length I is suspended horizontally
with end B on the edge of a table, and the other end, A is held by hand.
Point A is suddenly released. At the instant after release:

a. What is the torque about B?

b. What is the angular acceleration about B?

c. What is the vertical acceleration of the center of mass?
Ans. 3g/A

d. From part c, find by inspection the vertical force at B.

Ans. mg/4

6.15 A pendulum is made of two disks each of mass M and radius R
separated by a massless rod. One of the disks is pivoted through its
center by a small pin. The disks hang in the same plane and their
centers are a distance I apart. Find the period for small oscillations.

6.16 A physical pendulum is made of a uniform disk of mass M and
radius R suspended from a rod of negligible mass. The distance from
the pivot to the center of the disk is I. What value of I makes the period
a minimum?

6.17 A rod of length I and mass m, pivoted at one end, is held by a
spring at its midpoint and a spring at its far end, both pulling in opposite
directions. The springs have spring constant k, and at equilibrium
their pull is perpendicular to the rod. Find the frequency of small oscilla-
tions about the equilibrium position. See figure below left

W////////////////////^^^^^

6.18 Find the period of a pendulum consisting of a disk of mass M and
radius R fixed to the end of a rod of length I and mass m. How does
the period change if the disk is mounted to the rod by a frictionless bear-
ing so that it is perfectly free to spin? See figure above right

6.19 A solid disk of mass M and radius R is on a vertical shaft. The
shaft is attached to a coil spring which exerts a linear restoring torque of
magnitude CO, where 6 is the angle measured from the static equilibrium
position and C is a constant. Neglect the mass of the shaft and the
spring, and assume the bearings to be frictionless.



282 ANGULAR MOMENTUM AND FIXED AXIS ROTATION

a. Show that the disk can undergo simple harmonic motion, and find
the frequency of the motion.

b. Suppose that the disk is moving according to 0 = 0O sin (cot), where
co is the frequency found in part a. At time U = TT/OJ, a ring of sticky
putty of mass M and radius R is dropped concentrically on the disk.
Find:

(1) The new frequency of the motion
(2) The new amplitude of the motion

6.20 A thin plank of mass M and length I is pivoted at one end (see
figure below). The plank is released at 60° from the vertical. What
is the magnitude and direction of the force on the pivot when the plank
is horizontal?

6.21 A cylinder of radius R and mass M rolls without slipping down a
plane inclined at angle 6. The coefficient of friction is JJL.

What is the maximum value of 0 for the cylinder to roll without slipping?
Ans. 6 — arctan 3/x

6.22 A bead of mass m slides without friction on a rod that is made to
rotate at a constant angular velocity co. Neglect gravity.

a. Show that r = roe
w' is a possible motion of the bead, where r0 is

the initial distance of the bead from the pivot.

b. For the motion described in part a, find the force exerted on the
bead by the rod.

c. For the motion described above, find the power exerted by the
agency which is turning the rod and show by direct calculation that this
power equals the rate of change of kinetic energy of the bead.

6.23 A disk of mass M and radius R unwinds from a tape wrapped
around it (see figure below at left). The tape passes over a frictionless
pulley, and a mass m is suspended from the other end. Assume that
the disk drops vertically.

a. Relate the accelerations of m and the disk, a and A, respectively,
to the angular acceleration of the disk.

Ans. clue. If A = 2a, then a = —

a
b. Find a, A and a.
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6.24 Drum A of mass M and radius R is suspended from a drum B
also of mass M and radius R, which is free to rotate about its axis (see
sketch below right). The suspension is in the form of a massless metal
tape wound around the outside of each drum, and free to unwind, as
shown. Gravity is directed downward. Both drums are initially at rest.
Find the initial acceleration of drum A, assuming that it moves straight
down.

y//////////////////////^^^

6.25 A marble of mass M and radius R is rolled up a plane of angle 6.
If the initial velocity of the marble is t^i what is the distance I it travels up
the plane before it begins to roll back down?

Ans. clue. If v0 = 3 m/s, 6 = 30°, then I « 1.3 m

6.26 A uniform sphere of mass M and radius R and a uniform cylinder
of mass M and radius R are released simultaneously from rest at-the
top of an inclined plane. Which body reaches the bottom first if they
both roll without slipping?

6.27 A Yo-Yo of mass M has an axle of radius b and a spool of radius
R. Its moment of inertia can be taken to be MR2/2. The Yo-Yo is
placed upright on a table and the string is pulled with a horizontal force
F as shown. The coefficient of friction between the Yo-Yo and the table

is / i -
What is the maximum value of F for which the Yo-Yo will roll without

slipping?

6.28 The Yo-Yo of the previous problem is pulled so that the string makes
an angle 6 with the horizontal. For what value of 6 does the Yo-Yo have
no tendency to rotate?

6.29 A Yo-Yo of mass M has an axle of radius b and a spool of radius R.
Its moment of inertia can be taken to be MR2/2 and the thickness of the
string can be neglected. The Yo-Yo is released from rest.

a. What is the tension in the cord as the Yo-Yo descends and as it
ascends?
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b. The center of the Yo-Yo descends distance h before the string is
fully unwound. Assuming that it reverses direction with uniform spin
velocity, find the maximum force on the string while the Yo-Yo turns
around.

6.30 A bowling ball is thrown down the alley with speed v0. Initially it
slides without rolling, but due to friction it begins to roll. Show that its
speed when it rolls without sliding is y^0-

6.31 A cylinder of radius R spins with angular velocity co0. When the
cylinder is gently laid on a plane, it skids for a short time and eventually
rolls without slipping. What is the final angular velocity, co/?

Ans. clue. If co0 = 3 rad/s, a>/ — 1 rad/s

6.32 A solid rubber wheel of radius R and mass M rotates with angular
velocity co0 about a frictionless pivot (see sketch at left). A second
rubber wheel of radius r and mass m, also mounted on a frictionless
pivot, is brought into contact with it. What is the final angular velocity
of the first wheel?

6.33 A cone of height h and base radius R is free to rotate about a
fixed vertical axis. It has a thin groove cut in the surface. The cone
is set rotating freely with angular speed co0, and a small block of mass m
is released in the top of the frictionless groove and allowed to slide under
gravity. Assume that the block stays in the groove. Take the moment
of inertia of the cone about the vertical axis to be Io.

a. What is the angular velocity of the cone when the block reaches
the bottom?

b. Find the speed of the block in inertial space when it reaches the
bottom.

6.34 A marble of radius b rolls back and forth in a shallow dish of radius
R. Find the frequency of small oscillations. R^> b.

Ans. co = \/$g/7R
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6.35 A cubical block of side L rests on a fixed cylindrical drum of radius
R. Find the largest value of L for which the block is stable. See figure
below left.

6.36 Two masses TTIA and TUB are connected by a string of length I and
lie on a frictionless table. The system is twirled and released with TTIA
instantaneously at rest and THB moving with instantaneous velocity v0 at
right angles to the line of centers, as shown below right.

Find the subsequent motion of the system and the tension in the
string.

Ans. clue. If mA = mB = 2 kg, v0 = 3 m/s, I = 0.5 m, then T = 18 N

vo

M

o— a—L—

M

o

6.37 a. A plank of length 21 and mass M lies on a frictionless plane.
A ball of mass m and speed v0 strikes its end as shown. Find the final
velocity of the ball, Vf, assuming that mechanical energy is conserved
and that vf is along the original line of motion.

b. Find vf assuming that the stick is pivoted at the lower end.
Ans. clue. For m = M, (a) vf = 3vo/b; (b) vf = vo/2

6.38 A rigid massless rod of length L joins two particles each of mass
m. The rod lies on a frictionless table, and is struck by a particle of
mass m and velocity v0, moving as shown. After the collision, the pro-
jectile moves straight back.

Find the angular velocity of the rod about its center of mass after the
collision, assuming that mechanical energy is conserved.

Ans. co = (4\/2/7)(t>o/X)

6.39 A boy of mass m runs on ice with velocity v0 and steps on the end
of a plank of length I and mass M which is perpendicular to his path.

a. Describe quantitatively the motion of the system after the boy is
on the plank. Neglect friction with the ice.

b. One point on the plank is at rest immediately after the collision.
Where is it?

Ans. 21/3 from the boy

6.40 A wheel with fine teeth is attached to the end of a spring with con-
stant k and unstretched length 1. For x > I, the wheel slips freely on
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the surface, but for x < I the teeth mesh with the teeth on the ground
so that it cannot slip. Assume that all the mass of the wheel is in its
rim.

a. The wheel is pulled to x = I + b and released. How close will it
come to the wall on its first trip?

b. How far out will it go as it leaves the wall?

c. What happens when the wheel next hits the gear track?

6.41 This problem utilizes most of the important laws introduced so far
and it is worth a substantial effort. However, the problem is tricky
(although not really complicated), so don't be alarmed if the solution
eludes you.

A plank of length 1L leans against a wall. It starts to slip downward
without friction. Show that the top of the plank loses contact with the
wall when it is at two-thirds of its initial height.

Hint: Only a single variable is needed to describe the system. Note
the motion of the center of mass.
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7.1 Introduction

In the last chapter we analyzed the motion of rigid bodies under-
going fixed axis rotation. In this chapter we shall attack the more
general problem of analyzing the motion of rigid bodies which can
rotate about any axis. Rather than emphasize the formal mathe-
matical details, we will try to gain insight into the basic principles.
We will discuss the important features of the motion of gyroscopes
and other devices which have large spin angular momentum, and
we will also look at a variety of other systems. Our analysis is
based on a very simple idea—that angular momentum is a vector.
Although this is obvious from the definition, somehow its signifi-
cance is often lost when one first encounters rigid body motion.
Understanding the vector nature of angular momentum leads to
a very simple and natural explanation for such a mysterious effect
as the precession of a gyroscope.

A second topic which we shall treat in this chapter is the con-
servation of angular momentum. We touched on this in the last
chapter but postponed any incisive discussion. Here the problem
is physical subtlety rather than mathematical complexity.

7.2 The Vector Nature of Angular Velocity and
Angular Momentum

In order to describe the rotational motion of a body we would like
to introduce suitable coordinates. Recall that in the case of trans-
lational motion, our procedure was to choose some convenient
coordinate system and to denote the position of the body by a
vector r. The velocity and acceleration were then found by suc-
cessively differentiating r with respect to time.

Suppose that we try to introduce angular coordinates 6xt 6yi and
dg about the x, y, and z axes, respectively. Can we specify the
angular orientation of the body by a vector?

e I (dx\ + ey) + ezk)

Unfortunately, this procedure can not be made to work; there is
no way to construct a vector to represent an angular orientation.

The reason that 6J and 6V) cannot be vectors is that the order
in which we add them affects the final result: 6X\ + 6y\ ^ 6y] + 6X\,
as we show explicitly in Example 7.1. For honest-to-good ness
vectors like x\ and y), x\ + y\ = y] + xt. Vector addition is
commutative.
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Example 7.1 Rotations through Finite Angles

Consider a can of maple syrup oriented as shown, and let us investigate
what happens when we rotate it by an angle of TT/2 around the x axis, and
then by TT/2 around the y axis, and compare the result with executing
the same rotations but in reverse order.

e-

The diagram speaks for itself:

Bx\ + 6y) * 6y] + OJ.

Fortunately, all is not lost; although angular position cannot be
represented by a vector, it turns out that angular velocity, the
rate of change of angular position, is a perfectly good vector.
We can define angular velocity by

ddx A dOy^ ddz r

V + J + k

COJ
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Axis of
rotation

\ r sin 0
\

. ^ . Ad
r sin 0 sin ——

The important point is that although rotations through finite angles
do not commute, infinitesimal rotations do* commute, so that
G> = lim (A6/A0 represents a true vector. The reason for this

A«->0

is discussed in Note 7.1 at the end of the chapter. Assuming
that angular velocity is indeed a vector, let us find how the velocity
of any particle in a rotating rigid body is related to the angular
velocity of the body.

Consider a rigid body rotating about some axis. We designate
the instantaneous direction of the axis by r\ and choose a coor-
dinate system with its origin on the axis. The coordinate system
is fixed in space and is inertial. As the body rotates, each of its
particles describes a circle about the axis of rotation. A vector
r from the origin to any particle tends to sweep out a cone. The
drawing shows the result of rotation through angle A0 about the
axis along n. The angle </> between n and r is constant, and the
tip of r moves on a circle of radius r sin <t>.

The magnitude of the displacement |Ar| is

|Ar| = 2r sin
A0
—

For Ad very small, we have

. Ad Ad
— ~ — and |Ar| r sin 4> Ad.

If Ad occurs in time At, we have \Ar\/At - r sin </> (Ad/At).
limit A£->0 ,

In the

dd
= r sin <t> —

at

In the limit, dr/dt is tangential to the circle, as shown below.
Recalling the definition of vector cross product (Sec. 1.2e),
we see that the magnitude of dr/dt, \dr/dt\ = rsin </>dd/dtt and
its direction, perpendicular to the plane of r and n, are given cor-

/

\
\

\

1
1

I r s i n <f>
1
1

N
\

\

1
/

1
/

/
/
• ^ dt

dt
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rectly by dr/dt = n X r dd/dt.
we have

It = v =(oxr.

Since dr/dt = v and n dd/dt = <o,

7.1

Example 7.2 Rotation in the xy Plane

To connect Eq. (7.1) with a more familiar case—rotation in the xy plane—
suppose that we evaluate v for the rotation of a particle about the z axis.
We have w = cok, and r = x\ + y\. Hence,

v = w X r

= cok X (x\ + y})
= oo(x] - y\).

In plane polar coordinates x = r cos 0, y = r sin 0, and therefore

v = cor(j cos 0 — f sin 0).

But j cos 0 — f sin 0 is a unit vector in the tangential direction 0. There-
fore,

v = corO.

This is the velocity of a particle moving in a circle of radius r at angular
velocity co.

It is sometimes difficult to appreciate at first the vector nature
of angular velocity since we are used to visualizing rotation about
a fixed axis, which involves only one component of angular velocity.
We are generally much less familiar with simultaneous rotation
about several axes.

We have seen that we can treat angular velocity as a vector in
the relation v = o> x r. It is important to assure ourselves that
this relation remains valid if we resolve <*> into components like
any other vector. In other words, if we write o> = <*>i + <o2, is it
true that v = (<ai X r) + (G>2 X r)? As the following example shows,
the answer is yes.

Example 7.3

r sin 6

r cos 0

Vector Nature of Angular Velocity

Consider a particle rotating in a vertical plane as shown in the sketch.
The angular velocity G> lies in the xy plane and makes an angle of 45°
with the xy axes.

First we shall calculate v directly from the relation v = dr/dt. To find

r, note from the sketch at left that z — r cos 6, x = — r sin 0 / v 2 and

y = r sin 0 /V2. Hence,

r I —-= sin 01 -\ sin 6} + cos 0k
\ V 2 V2
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and differentiating, we have, since r = constant,

dr
— = v
dt

- sin 0k]
= cor —— cos 0i H 7= cos 0j — sin 0k L

LV2 V2 J

= r —— cos i

IV2
dB_

It

where we have used dd/dt = co.
Next we shall find the velocity from v = 0 X r. Assuming that <o can

be resolved into components,

we have

V 2

o> X r

f i
CO CO

— r sin 0 r sin 0

k

0

r cos 0
V2 V2

= cor (^-=. cos 0i H ^ cos 0j - sin 0k )
\V2 V2 /

in agreement with Eq. (1).
As we expect, there is no problem in treating <o like any other vector.

In the following example we shall see that a problem can be
greatly simplified by resolving o> into components along convenient
axes. The example also demonstrates that angular momentum
is not necessarily parallel to angular velocity.

Example 7.4 Angular Momentum of a Rotating Skew Rod

Consider a simple rigid body consisting of two particles of mass m sepa-
rated by a massless rod of length 21. The midpoint of the rod is attached
to a vertical axis which rotates at angular speed co. The rod is skewed
at angle a, as shown in the sketch. The problem is to find the angular
momentum of the system.

The most direct method is to calculate the angular momentum from
the definition L = 2(r7 X Py). Each mass moves in a circle of radius
I cos a with angular speed co. The momentum of each mass is |p| =
mail cos a, tangential to the circular path. Taking the midpoint of the
skew rod as origin, |r| = I. r lies along the rod and is perpendicular to
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p. Hence |L| = 2mwl2 cos a. L is perpendicular to the skew rod and lies
in the plane of the rod and the z axis, as shown in the left hand drawing,
below. L turns with the rod, and its tip traces out a circle about the zaxis.

(rxp),

We now turn to a method for calculating L which emphasizes the
vector nature of w. First we resolve G> = cok into components &± and
on, perpendicular and parallel to the skew rod. From the right hand
drawing, above, we see that cu_j_ = co cos a, and con = w sin a.

Since the masses are point particles, con produces no angular momen-
tum. Hence, the angular momentum is due entirely to o>±. The angular
momentum is readily evaluated: the moment of inertia about the direc-
tion of O_L is 2m/2, and the magnitude of the angular momentum is

L = Icoj_

= 2ml2c*) cos a.

L points along the direction of O>_L. Hence, L swings around with the rod;
the tip of L traces out a circle about the z axis. (We encountered a
similar situation in Example 6.2 with the conical pendulum.) Note that
L is not parallel to co. This is generally true for nonsymmetric bodies.

The dynamics of rigid body motion is governed by t = dL/dt.
Before we attempt to apply this relation to complicated systems,
let us gain some insight into its physical meaning by analyzing the
torque on the rotating skew rod.

Example 7.5 Torque on the Rotating Skew Rod

In Example 7.4 we showed that the angular momentum of a uniformly
rotating skew rod is constant in magnitude but changes in direction.
L is fixed with respect to the rod and rotates in space with the rod.
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The torque on the rod is given by T = dL/dt. We can find dl/dt
quite easily by decomposing L as shown in the sketch. (We followed a
similar procedure in Example 6.6 for the conical pendulum.) The com-
ponent Lz parallel to the z axis, L cos a, is constant. Hence, there is
no torque in the z direction. The horizontal component of L, Lh =
L sin a, swings with the rod. If we choose xy axes so that Lh coincides
with the x axis at t = 0, then at time t we have

Lx = Lh cos cot

= L sin a cos at
Ly = Lh sin at

= L sin a sin cot.

Hence,

L = L sin a(\ cos ait + j sin cot) + L cos ak.

The torque is

dl

* = Tt
— Leo sin a( — f sin cot + j cos cot).

Using L = ZmPco cos a, we obtain

TX = — 2ml2co2 sin a cos a sin co£

ry = 2ml2co2 sin a cos a cos cot.

Hence,

= 2ml2co2 sin a cos a

= coL sin a.

Note that T = 0 for a = 0 or a = TT/2. DO you see why? Also, can
you see why the torque should be proportional to co2?

This analysis may seem roundabout, since the torque can be calculated
directly by finding the force on each mass and using T = 2r, X f,-. How-
ever, the procedure used above is just as quick. Furthermore, it illus-
trates that angular velocity and angular momentum are real vectors
which can be resolved into components along any axes we choose.

Example 7.6 Torque on the Rotating Skew Rod (Geometric Method)

In Example 7.5 we calculated the torque on the rotating skew rod by
resolving L into components and using T = dL/dt. We repeat the cal-
culation in this example using a geometric argument which emphasizes
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the connection between torque and the rate of change of L. This method
illustrates a point of view that will be helpful in analyzing gyroscopic
motion.

As in Example 7.5, we begin by resolving L into a vertical component
Lz — L cos a and a horizontal component Lh = L sin a as shown in the
sketch. Since L* is constant, there is no torque about the z axis. L/, is
constant in magnitude but is rotating with the rod. The time rate of
change of L is due solely to this effect.

Once again we are dealing with a rotating vector. From Sec. 1.8 or
Example 6.6, we know that dLh/dt = coLh. However, since it is so impor-
tant to be able to visualize this result, we derive it once more. From
the vector diagram we have

dLh

The torque is given by

dLk

= coL sin a,

which is identical to the result of the last example. The torque * is
parallel to AL in the limit. For the skew rod, ? is in the tangential direc-
tion in the horizontal plane and rotates with the rod.

You may have thought that torque on a rotating system always
causes the speed of rotation to change. In this problem the speed of
rotation is constant, and the torque causes the direction of L to change.
The torque is produced by the forces on the rotating bearing of the skew
rod. For a real rod this would have to be an extended structure, some-
thing like a sleeve. The torque causes a time varying load on the sleeve
which results in vibration and wear. Since there is no way for a uniform
gravitational field to exert a torque on the skew rod, the rod is said to be
statically balanced. However, there is a torque on the skew rod when it
is rotating, which means that it is not dynamically balanced. Rotating
machinery must be designed for dynamical balance if it is to run smoothly.

7.3 The Gyroscope

We now turn to some aspects of gyroscope motion which can be
understood by using the basic concepts of angular momentum,
torque, and the time derivative of a vector. We shall discuss each
step carefully, since this is one area of physics where intuition may
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not be much help. Our treatment of the gyroscope in this section
is by no means complete. Instead of finding the general motion
of the gyroscope directly from the dynamical Equations, we bypass
this complicated mathematical problem and concentrate on uni-
form precession, a particularly simple and familiar type of gyro-
scope motion. Our aim is to show that uniform precession is con-
sistent with T = dL/dt and Newton's laws. While this approach
cannot be completely satisfying, it does illuminate the physical
principles involved.

The essentials of a gyroscope are a spinning flywheel and a sus-
pension which allows the axle to assume any orientation. The
familiar toy gyroscope shown in the drawing is quite adequate
for our discussion. The end of the axle rests on a pylon, allowing
the axis to take various orientations without constraint.

The right hand drawing above is a schematic representation of
the gyroscope. The triangle represents the free pivot, and the
flywheel spins in the direction shown.

If the gyroscope is released horizontally with one end supported
by the pivot, it wobbles off horizontally and then settles down to
uniform precession, in which the axle slowly rotates about the ver-
tical with constant angular velocity 12. One's immediate impulse
is to ask why the gyroscope does not fall. A possible answer is
suggested by the force diagram. The total vertical force is
N — W, where N is the vertical force exerted by the pivot and
W is the weight. If N = W, the center of mass cannot fall.

This explanation, which is quite correct, is not satisfactory. We
have asked the wrong question. Instead of wondering why the
gyroscope does not fall, we should ask why it does not swing about
the pivot like a pendulum.

As a matter of fact, if the gyroscope is released with its flywheel
stationary, it behaves exactly like a pendulum; instead of preces-
sing horizontally, it swings vertically. The gyroscope precesses
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only if the flywheel is spinning rapidly. In this case, the large
spin angular momentum of the flywheel dominates the dynamics
of the system.

Nearly all of the gyroscope's angular momentum lies in Ls, the
spin angular momentum. Ls is directed along the axle and has
magnitude Ls = 70w,f where 70 is the moment of inertia of the fly-
wheel about its axle. When the gyroscope precesses about the
z axis, it has a small orbital angular momentum in the z direction.
However, for uniform precession the orbital angular momentum
is constant in magnitude and direction and plays no dynamical
role. Consequently, we shall ignore it here.

L8 always points along the axle. As the gyroscope precesses, L8

rotates with it. (Seefigure a below.) We have encountered rotat-
ing vectors many times, most recently in Example 7.6. If the angu-
lar velocity of precession is ft, the rate of change of Ls is given by

The direction of dLjdt is tangential to the horizontal circle swept
out by Ls. At the instant shown in figure b, Ls is in the x direc-
tion and dL8/dt is in the y direction.

(b)

There must be a torque on the gyroscope to account for the
change in Ls. The source of the torque is apparent from the

-x force diagram at left. If we take the pivot as the origin, the torque
is due to the weight of the flywheel acting at the end of the axle.
The magnitude of the torque is

r = IW.

T is in the y direction, parallel to dLs/dt, as we expect.
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We can find the rate of precession 12 from the relation

dt = r.

Since \dls/dt\ = 12LS and r = IW, we have

12L5 = IW.

or

12
IW

12

Alternatively, we could have analyzed the motion about the cen-
ter of mass. In this case the torque is r0 = Nl = Wl as before,
since N = W.

Equation (7.2) indicates that 12 increases as the flywheel slows.
This effect is easy to see with a toy gyroscope. Obviously 12 can-
not increase indefinitely; eventually uniform precession gives way
to a violent and erratic motion. This occurs when 12 becomes so
large that we cannot neglect small changes in the angular momen-
tum about the vertical axis due to frictional torque. However, as
is shown in Note 7.2, uniform precession represents an exact solu-
tion to the dynamical equations governing the gyroscope.

Although we have assumed that the axle of the gyroscope is
horizontal, the rate of uniform precession is independent of the
angle of elevation, as the following example shows.

Example 7.7 Gyroscope Precession

Consider a gyroscope in uniform precession with its axle at angle <f> with
the vertical. The component of Ls in the xy plane varies as the gyro-
scope precesses, while the component parallel to the z axis remains
constant.

The horizontal component of Ls is Ls sin </>. Hence

|dLs/cfa| = 12LS sin <f>.

T^e torque due to gravity is horizontal and has magnitude

r = I sin </> W.

We have

12LS sin 0 = Z sin <f> W

The precessional velocity is independent of <j>.
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Our treatment shows that gyroscope precession is completely
consistent with the dynamical equation z = dL/dt. The following
example gives a more physical explanation of why a gyroscope
precesses.

v0

Example 7.8 Why a Gyroscope Precesses

Gyroscope precession is hard to understand because angular momentum
is much less familiar to us than particle motion. However, the rotational
dynamics of a simple rigid body can be understood directly in terms of
Newton's laws. Rather than address ourselves specifically to the gyro-
scope, let us consider a rigid body consisting of two particles of mass m
at either end of a rigid massless rod of length 21. Suppose that the rod
is rotating in free space with its angular momentum Ls along the z direc-
tion. The speed of each mass is v0. We shall show that an applied
torque T causes Ls to precess with angular velocity £2 = T/LS.

To simplify matters, suppose that the torque is applied only during a
short time At while the rod is instantaneously oriented along the x axis.
We assume that the torque is due to two equal and opposite forces F,
as shown. (The total force is zero, and the center of mass remains at
rest.) The momentum of each mass changes by

Ap = m Av = FAt.

—>' Since Av is perpendicular to v0, the velocity of each mass changes
direction, as shown at left below, and the rod rotates about a new
direction.

The axis of rotation tilts by the angle

Av

FAt

The torque on the system is r = 2FI, and the angular momentum is
L8 = 2mvol. Hence

A , FAt
A0 =

_ 21F At

2lmv0

rAt



300 RIGID BODY MOTION

The rate of precession while the torque is acting is therefore

At

T

which is identical to the result for gyroscope precession. Also, the
change in the angular momentum, ALS, is in the y direction parallel to
the torque, as required.

This model gives some insight into why a torque causes a tilt in the
axis of rotation of a spinning body. Although the argument can be elab-
orated to apply to an extended body like a gyroscope, the final result is
equivalent to using T = dt/dt.

The discussion in this section applies to uniform precession, a
very special case of gyroscope motion. We assumed at the begin-
ning of our analysis that the gyroscope was executing this motion,
but there are many other ways a gyroscope can move. For
instance, if the free end of the axle is held at rest and suddenly
released, the precessional velocity is instantaneously zero and the
center of mass starts to fall. It is fascinating to see how this fall-
ing motion turns into uniform precession. We do this in Note 7.2
at the end of the chapter by a straightforward application of
T = dL/dt. However, the treatment requires the general rela-
tion between L and o> developed in Sec. 7.6.

7.4 Some Applications of Gyroscope Motion

In this section we present a few examples which show the appli-
cation of angular momentum to rigid body motion.

Example 7.9 Precession of the Equinoxes

To a first approximation there are no torques on the earth and its angu-
lar momentum does not change in time. To this approximation, the
earth's rotational speed is constant and its angular momentum always
points in the same direction in space.

If we analyze the earth-sun system with more care, we find that there
is a small torque on the earth. This causes the spin axis to slowly alter
its direction, resulting in the phenomenon known as precession of the
equinoxes.

The torque arises because of the interaction of the sun and moon
with the nonspherical shape of the earth. The earth bulges slightly; its

21 km
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N

\\ A/

Polaris

Precession

mean equatorial radius is 21 km greater than the polar radius. The
gravitational force of the sun gives rise to a torque because the earth's
axis of rotation is inclined with respect to the plane of the ecliptic (the
orbital plane). During the winter, the part of the bulge above the ecliptic,
A in the top sketch, is nearer the sun than the lower part B. The mass
at A is therefore attracted more strongly by the sun than is the mass
at B, as shown in the sketch. This results in a counterclockwise torque
on the earth, out of the plane of the sketch. Six months later, when the
earth is on the other side of the sun, B is attracted more strongly than
.4. However, the torque has the same direction in space as before.
Midway between these extremes, the torque is zero. The average torque
is perpendicular to the spin angular momentum and lies in the plane
of the ecliptic. In a similar fashion, the moon exerts an average torque
on the earth; this torque is about twice as great as that due to the sun.

The torque causes the spin axis to precess about a normal to the
ecliptic. As the spin axis precesses, the torque remains perpendicular
to it; the system acts like the gyroscope with tilted axis that we analyzed
in Example 7.7.

The period of the precession is 26,000 years. 13,000 years from now,
the polar axis will not point toward Polaris, the present north star; it
will point 2 X 23^° = 47° away. Orion and Sirius, those familiar winter
guides, will then shine in the midsummer sky.

The spring equinox occurs at the instant the sun is directly over the
equator in its apparent passage from south to north. Due to the pre-
cession of the earth's axis, the position of the sun at the equinox against
the background of fixed stars shifts by 50 seconds of arc each year.
This precession of the equinoxes was known to the ancients. It figures
in the astrological scheme of cyclic history, which distinguishes twelve
ages named by the constellation in which the sun lies at spring equinox.
The present age is Pisces, and in 600 years it will be Aquarius.

Example 7.10 The Gyrocompass Effect

Try the following experiment with a toy gyroscope. Tie strings to the
frame of the gyroscope at points A and B on opposite sides midway
between the bearings of the spin axis. Hold the strings taut at arm's
length with the spin axis horizontal. Now slowly pivot so that the spin-
ning gyroscope moves in a circle with arm length radius. The gyroscope
suddenly flips and comes to rest with its spin axis vertical, parallel to
your axis of rotation. Rotation in the opposite direction causes the gyro
to flip by 180°, making its spin axis again parallel to the rotation axis.
(The spin axis tends to oscillate about the vertical, but friction in the
horizontal axle quickly damps this motion.)

The gyrocompass is based on this effect. A flywheel free to rotate
about two perpendicular axes tends to orient its spin axis parallel to the
axis of rotation of the system. In the case of a gyrocompass, the "sys-
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tern" is the earth; the compass comes to rest with its axis parallel to the
polar axis.

We can understand the motion qualitatively by simple vector argu-
ments. Assume that the axle is horizontal with Ls pointing along the
x axis. Suppose that we attempt to turn the compass about the z
axis. If we apply the forces shown, there is a torque along the z axis,
TZ, and the angular momentum along the z axis, L2, starts to increase.
If Ls were zero, Lz would be due entirely to rotation of the gyrocompass
about the z axis: Lz = Iza>z, where Ig is the moment of inertia about the
z axis. However, when the flywheel is spinning, another way for Lz to
change is for the gyrocompass to rotate around the AB axis, swinging
La toward the z direction. Our experiment shows that if Ls is large, most
of the torque goes into reorienting the spin angular momentum; only a
small fraction goes toward rotating the gyrocompass about the z axis.

We can see why the effect is so pronounced by considering angular
momentum along the y axis. The pivots at A and B allow the system
to swing freely about the y axis, so there can be no torque along the y
axis. Since Ly is initially zero, it must remain zero. As the gyrocompass
starts to rotate about the z axis, Ls acquires a component in the y direc-
tion. At the same time, the gyrocompass and its frame begin to flip
rapidly about the y axis. The angular momentum arising from this
motion cancels the y component of L5. When Ls finally comes to rest
parallel to the z axis, the motion of the frame no longer changes the
direction of Ls, and the spin axis remains stationary.

The earth is a rotating system, and a gyrocompass on the surface of
the earth will line up with the polar axis, indicating true north. A practical
gyrocompass is somewhat more complicated, however, since it must con-
tinue to indicate true north without responding to the motion of the ship
or aircraft which it is guiding. In the next example we solve the dynam-
ical equation for the gyrocompass and show how a gyrocompass fixed
to the earth indicates true north.

Example 7.11 Gyrocompass Motion

Consider a gyrocompass consisting of a balanced spinning disk held in
a light frame supported by a horizontal axle. The assembly is on a
turntable rotating at steady angular velocity 12. The gyro has spin angu-
lar momentum Ls = Iscos along the spin axis. In addition, it possesses
angular momentum due to its bodily rotation about the vertical axis at
rate 12, and by virtue of rotation about the horizontal axle.

There cannot be any torque along the horizontal AB axis because that
axle is pivoted. Hence, the angular momentum LK along the AB direc-
tion is constant, and dLh/dt = 0.

There are two contributions to dLh/dt. If 6 is the angle from the ver-
tical to the spin axis, and I± is the moment of inertia about the AB axis,
then Lh = I±6, and there is a contribution to dLh/dt of I±6.
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Lr sin 0

In addition, Lh can change because of a change in direction of L5, as
we have learned from analyzing the precessing gyroscope. The hori-
zontal component of Ls is Ls sin 6, and its rate of increase along the AB
axis is QLS sin 0.

We have considered the two changes in Lh independently. It is plau-
sible that the total change in Lh is the sum of the two changes; a rigorous
justification can be given based on arguments presented in Sec. 7.7.

Adding the two contributions to dLh/dt gives

— = IJ + QL.s\nO.
dt

Since dLh/dt — 0, the equation of motion becomes

^ \ Sin 6 = 0.

This is identical to the equation for a pendulum discussed in Sec. 6.6.
When the spin axis is near the vertical, sin 0 « 6 and the gyro executes
simple harmonic motion in 6:

6 = d0 sin fit

where

If there is a small amount of friction in the bearings at A and B, the ampli-
tude of oscillation 0O will eventually become zero, and the spin axis comes
to rest parallel to 12.

To use the gyro as a compass, fix it to the earth with the AB axle ver-
tical, and the frame free to turn. As the drawing on the next page
shows, if X is the latitude of the gyro, the component of the earth's
angular velocity 12e perpendicular to the AB axle is the horizontal com-
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ponent fte cos X. The spin axis oscillates in the horizontal plane about
the direction of the north pole, and eventually comes to rest pointing
north.

The period of small oscillations is T = 2TT/@ = 2TT V7±/(/5wsS2e cos X).
For a thin disk I±/Is = i. fte = 2TT rad/day. With a gyro rotating at
20,000 rpm, the period at the equator is 11 s. Near the north pole the
period becomes so long that the gyrocompass is not effective.

Center
of mass

Example 7.12 The Stability of Rotating Objects

Angular momentum can make a freely moving object remarkably stable.
For instance, spin angular momentum keeps a childs' rolling hoop upright
even when it hits a bump; instead of falling, the hoop changes direction
slightly and continues to roll. The effect of spin on a bullet provides
another example. The spiral grooves, or rifling, in a gun's barrel give
the bullet spin, which helps to stabilize it.

To analyze the effect of spin, consider a cylinder moving parallel to
its axis. Suppose that a small perturbing force F acts on the cylinder for
time At. F is perpendicular to the axis, and the point of application is a
distance I from the center of mass.

We consider first the case where the cylinder has zero spin. The
torque along the axis AA through the center of mass is r = Fl, and the
"angular impulse" is r At — Fl At. The angular momentum acquired
around the AA axis is

ALA = IA(O) - o>0) = Fl At.

Since coo, the initial angular velocity, is 0, the final angular velocity is
given by

FlAt
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The effect of the blow is to give the cylinder angular velocity around the
transverse axis; it starts to tumble.

Now consider the same situation, except that the cylinder is rapidly
spinning with angular momentum Ls. The situation is similar to that of
the gyroscope: torque along the AA axis causes precession around the
BB axis. The rate of precession while F acts is dLJdt = ALS, or

I*

The angle through which the cylinder precesses is

=
 FlAt.
U

Instead of starting to tumble, the cylinder slightly changes its orientation
while the force is applied, and then stops precessing. The larger the
spin, the smaller the angle and the less the effect of perturbations on
the flight.

Note that spin has no effect on the center of mass motion. In both
cases, the center of mass acquires velocity Av = F At/M.

7.5 Conservation of Angular Momentum

Before tackling the general problem of rigid body motion, let us
return to the question of whether or not the angular momentum
of an isolated system is conserved. To start, we shall show that
conservation of angular momentum does not follow from Newton's
laws.

Consider a system of N particles with masses mlt m2, . . . ,
rrij, . . . , WAr. We assume that the system is isolated, so that
the forces are due entirely to interactions between the particles.
Let the force on particle j be

where f# is the force on particle j due to particle k. (In evalu-
ating the sum, we can neglect the term with k = j, since f# = 0,
by Newton's third law.)

Let us choose an origin and calculate the torque */ on particle j.

*i = *i X fy

= ry x X '*•
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Let XJI be the torque on j due to the particle I:

*jl = *j X fyi-

Similarly, the torque on I due to,? is

The sum of these two torques is

(a)

(b)

= ri X ry X

Since fy = — fij, we have

*jl + fiy = fo X fjy) - fa X fy)

= iTi - rj) x fij

= *ji X fij,

where r3i is a vector from j to L We would like to be able to prove
that Tyz + *zij = 0, since it would follow that the internal torques
cancel in pairs, just as the internal forces do. The total internal
torque would then be zero, proving that the angular momentum
of an isolated system is conserved.

Since neither xjX nor fh is zero, in order for the torque to vanish,
fij must be parallel to xjh as shown in figure (a). With respect
to the situation in figure (6), however, the torque is not zero, and
angular momentum is not conserved. Nevertheless, the forces
are equal and opposite, and linear momentum is conserved.

The situation shown in figure (a) corresponds to the case of
central forces, and we conclude that the conservation of angular
momentum follows from Newton's laws in the case of central
force motion. However, Newton's laws do not explicitly require
forces to be central. We must conclude that Newton's laws have
no direct bearing on whether or not the angular momentum of an
isolated system is conserved, since these laws do not in themselves
exclude the situation shown in figure (6).

It is possible to take exception to the argument above on the
following grounds: although Newton's laws do not explicitly require
forces to be central, they implicitly make this requirement because
in their simplest form Newton's laws deal with particles. Par-
ticles are idealized masses which have no size and no structure.
In this case, the force between isolated particles must be central,
since the only vector defined in a two particle system is the vector
Xji from one particle to the other. For instance, suppose that we
try to invent a force which lies at angle 6 with respect to the inter-
particle axis, as shown in the diagram. There is no way to dis-
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tinguish direction a from b, however; both are at angle 6 with
respect to ryz. An angle-dependent force cannot be defined using
only the single vector r̂ ; the force between the two particles must
be central.

The difficulty in discussing angular momentum in the context
of newtonian ideas is that our understanding of nature now encom-
passes entities vastly different from simple particles. As an
example, perhaps the electron comes closest to the newtonian
idea of a particle. The electron has a well-defined mass and, as
far as present knowledge goes, zero radius. In spite of this, the
electron has something analogous to internal structure; it pos-
sesses spin angular momentum. It is paradoxical that an object
with zero size should have angular momentum, but we must
accept this paradox as one of the facts of nature.

Because the spin of an electron defines an additional direction
in space, the force between two electrons need not be central.
As an example, there might be a force

F12 = CYU X (Si + S2)

F2i = Cr2i X (Si + S2),

where C is some constant and St- is a vector parallel to the angular
momentum of the ith electron. The forces are equal and oppo-
site but not central, and they produce a torque.

There are other possibilities for noncentral forces. Experi-
mentally, the force between two charged particles moving with
respect to each other is not central; the velocity provides a second
axis on which the force depends. The angular momentum of the
two particles actually changes. The apparent breakdown of con-
servation of angular momentum is due to neglect of an important
part of the system, the electromagnetic field. Although the con-
cept of a field is alien to particle mechanics, it turns out that
fields have mechanical properties. They can possess energy,
momentum, and angular momentum. When the angular momen-
tum of the field is taken into account, the angular momentum of
the entire particle-field system is conserved.

The situation, in brief, is that newtonian physics is incapable
of predicting conservation of angular momentum, but no isolated
system has yet been encountered experimentally for which angu-
lar momentum is not conserved. We conclude that conservation
of angular momentum is an independent physical law, and until
a contradiction is observed, our physical understanding must be
guided by it.
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7.6 Angular Momentum of a Rotating Rigid Body

Angular Momentum and the Tensor of Inertia

The governing equation for rigid body motion, * = dl/dt, bears
a formal resemblance to the translational equation of motion
F = dP/dt. However, there is an essential difference between
them. Linear momentum and center of mass motion are simply
related by P = MV, but the connection between L and G> is not
so direct. For fixed axis rotation, L = /co, and it is tempting to
suppose that the general relation is L = /G>, where / is a scalar,
that is, a simple number. However, this cannot be correct, since
we know from our study of the rotating skew rod, Example 7.4, that
L and o are not necessarily parallel.

In this section, we shall develop the general relation between
angular momentum and angular velocity, and in the next section
we shall attack the problem of solving the equations of motion.

As we discussed in Chap. 6, an arbitrary displacement of a
rigid body can be resolved into a displacement of the center of
mass plus a rotation about some instantaneous axis through the
center of mass. The translational motion is easily treated. We
start from the general expressions for the angular momentum
and torque of a rigid body, Eqs. (6.11) and (6.14):

L = R X MV + Sr, x m/,- 7.3

% = R X F + 2r; X fy, 7.4

where r] is the position vector of nij relative to the center of mass.
Since * = dl/dt, we have

RXF + Srjx fy = J (Rx MV) + ^ (2r; X mfy
at at

= R X MA + j (SrJ X mfy.
dt

Since F = MA, the terms involving R cancel, and we are left with

si-; x fy = jt (si-;, x m,i;.). 7.5
at

The rotational motion can be found by taking torque and angular
momentum about the center of mass, independent of the center
of mass motion. The angular momentum Lo about the center
of mass is

Lo = SrJ X m/j. 7.6
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Our task is to express Lo in terms of the instantaneous angular
velocity <a. Since x] is a rotating vector,

r - o v r'Xj - 6) X Xjm

Therefore,

Lo = SrJ X my(o> X ry).

To simplify the notation, we shall write L for Lo and Xj for x\. Our
result becomes

L = XXj x mfa x Xj). 7.7

This result looks complicated. As a matter of fact, it is com-
plicated, but we can make it look simple. We will take the pedes-
trian approach of patiently evaluating the cross products in Eq.
(7.7) using cartesian coordinates.1

Since <*> = cox\ + coyj + wzk, we have

o) X X = (zuy — yuz)\ + (xo)z — za>x)] 7.8

Let us compute one component of L, say Lx. Temporarily drop-
ping the subscript,?, we have

[r x (o> X r)]x = ?/(G) x x)z — 2(0 X x)y. 7.9

If we substitute the results of Eq. (7.8) into Eq. (7.9), the result is

= (y2 + z2)o)x — xyuy — xzo)z. 7.10

Hence,

Let us introduce the following symbols:

J- xy z==1 ~ ^ijXjl/j / ,1c.

Ixx is called a moment of inertia. It is identical to the moment of
inertia introduced in the last chapter, / = ^nijPj2, provided that
we take the axis in the x direction so that py

2 = yf + z/. The
quantities Ixy and Ixz are called products of inertia. They are
symmetrical; for example, Ixy = —'EmjXjyj = —^mftjjXj = Iyx.

To find Ly and Lz, we could repeat the derivation. However,
a simpler method is to relabel the coordinates by letting x—*y,
1 Another way is to use the vector identity A X (B X C) = (A • C)B — (A • B)C.
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y—> z, z—> x. If we make these substitutions in Eqs. (7.11) and
(7.12), we obtain

L x = IXXO)X IXZO)Z 7.13a

7.136

7.13c

This array of three equations is different from anything we have
so far encountered. They include the results of the last chapter.
For fixed axis rotation about the z direction, o> = wk and Eq.
(7.13c) reduces to

Lt = Izza>

+
However, Eq. (7.13) also shows that angular velocity in the z direc-
tion can produce angular momentum about any of the three coor-
dinate axes. For example, if o = <ok, then Lx = Ixzo) and
Ly = Iyzo). In fact, if we look at the set of equations for Lx, Lv, and
Lz, we see that in each case the angular momentum about one axis
depends on the angular velocity about all three axes. Both L and
o are ordinary vectors, and L is proportional to <o in the sense
that doubling the components of w doubles the components of L
However, as we have already seen from the behavior of the rota-
ting skew rod, Example 7.4, L does not necessarily point in the
same direction as o.

Example 7.13 Rotating Dumbbell

Consider a dumbbell made of two spheres of radius b and mass M
separated by a thin rod. The distance between centers is 21. The body
is rotating about some axis through its center of mass. At a certain
instant the rod coincides with the z axis, and G> lies in the yz plane, o> =
wyi + What is L?

To find L, we need the moments and products of inertia. Fortunately,
the products of inertia vanish for a symmetrical body lined up with the
coordinate axes. For example, Ixy = —XmjXjyj = 0, since for mass
mn located at (xn,yn) there is, in a symmetrical body, an equal mass
located at (xn, —yn)', the contributions of these two masses to Ixy cancel.
In this case Eq. (7.13) simplifies to

Lx = IxxUx

Liy = 1 yyOOy

Lz = Izzuz.
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The moment of inertia Izz is just the moment of inertia of two spheres
about their diameters.

In calculating Iyy, we can use the parallel axis theorem to find the moment
of inertia of each sphere about the y axis.

Iyy = 2(iMb2 + Ml*)
= iMb2 + 2Ml\

We have assumed that the rod has negligible mass.
Since G> = cojj + coA

Iyy and Izz are not equal; therefore Ly/Lz ^ uy/u>z and L is not parallel
to G>, as the drawing shows.

Equations (7.13) are cumbersome, so that it is more convenient
to write them in the following shorthand notation.

L = 7.14

This vector equation represents three equations, just as F = ma
represents three equations. The difference is that m is a simple
scalar while I is a more complicated mathematical entity called a
tensor. I is the tensor of inertia.

We are accustomed to displaying the components of some
vector A in the form

A = \Ax,AyiAz).

Similarly, the nine components of I can be tabulated in a 3 X 3
array:

7.15

Of the nine components, only six at most are different, since
IVx = Ixy, Izx'= Ixz, and Iyz = Ity. The rule for multiplying G> by
I to find L = l(o is defined by Eq. (7.13).

The following example illustrates the tensor of inertia.
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Example 7.14 The Tensor of Inertia for a Rotating Skew Rod

We found the angular momentum of a rotating skew rod from first
principles in Example 7.3. Let us now find L for the same device by
using L = Id).

A massless rod of length 21 separates two equal masses m. The rod
is skewed at angle a with the vertical, and rotates around the z axis
with angular velocity co. At t = 0 it lies in the xz plane. The coordinates
of the particles at any other time are:

Particle 1

Xi = p COS Cot

yi = p sin cot

z,= -h

Particle 2

x2 = —p cos cot

2/2 = —p sin cot

when p = I cos a and h = I sin a.
The components of f can now be calculated from their definitions.

For instance,

z2
2)

2w(p2 sin2 ut + h2)

±zy =

= 2mph sin cot.

The remaining terms are readily evaluated. We find:

( p2 sin2 cot + h2 — p2 sin cot cos cot ph cos oot\
— p2 sin cot cos cot p2 cos2 cot -f h2 ph sin cot ).

ph cos co£ ph sin

The common factor 2m multiplies each term.
Since o> = (0,0,co), we have, from Eq. (7.13),

Lx = 2mpho) cos cot

Lv = 2mphco sin co£

Lg = 2mp2co.

We can differentiate L to find the applied torque:

r x = —2mphco2 sin co£

TJ, = 2mphco2 cos atf

r , = 0.

The results are identical to those in Example 7.4, provided that we
make the substitution ph = I2 cos a sin a.
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Principal Axes

If the symmetry axes of a uniform symmetric body coincide with
the coordinate axes, the products of inertia are zero, as we saw
in Example 7.13. In this case the tensor of inertia takes a simple
diagonal form:

I = 7.16

Remarkably enough, for a body of any shape and mass distribu-
tion, it is always possible to find a set of three orthogonal axes
such that the products of inertia vanish. (The proof uses matrix
algebra and is given in most texts on advanced dynamics.) Such
axes are called principal axes. The tensor of inertia with respect
to principal axes has a diagonal form.

For a uniform sphere, any perpendicular axes through the
center are principal axes. For a body with cylindrical symmetry,
the axis of revolution is a principal axis. The other two principal
axes are mutually perpendicular and lie in a plane through the
center of mass perpendicular to the axis of revolution.

Consider a rotating rigid body, and suppose that we introduce
a coordinate system 1, 2, 3 which coincides instantaneously with
the principal axes of the body. With respect to this coordinate
system, the instantaneous angular velocity has components «if

w2, co3, and the components of L have the simple form

L\ =

LZ = /3CO3,

7.17

where / 1 , / 2 , Iz are the moments of inertia about the principal
axes. In Sec. 7.7, we shall exploit Eq. (7.17) in our attack on the
problem of rigid body dynamics.

Rotational Kinetic Energy

The kinetic energy of a rigid body is

K =

To separate the translational and rotational contributions, we
introduce center of mass coordinates:

•V = R + r;
vy = V + v;.
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We have

K = |2my(V + v;.

+ i
since the cross term V • 2myVy is zero.

Using Vy = o) x r'j, the kinetic energy of rotation becomes

Krot = i y

= |2my(o> X r'j) - (o> x rj).

The right hand side can be simplified with the vector identity
(A x B) • C = A • (B x C). Let A = G>, B = r'jt and C = o> X r'3.
We obtain

K r o t = i2nij<* • [r'j X (o> X r',)\

= | w • Sm;ry X (o> X r'3).

The sum in the last term is the angular momentum L by Eq. (7.7).
Therefore,

L. 7.18

Rotational kinetic energy has a simple form when L and G> are
referred to principal axes. Using Eqs. (7.17) and (7.18) we have

7.19

Alternatively,

2/3
7.20

Example 7.15 Why Flying Saucers Make Better Spacecraft than Do Flying Cigars

One of the early space satellites was cylindrical in shape and was put
into orbit spinning around its long axis. To the designer's surprise, even
though the spacecraft was torque-free, it began to wobble more and
more, until finally it was spinning around a transverse axis.

The reason is that although L is strictly conserved for torque-free
motion, kinetic energy of rotation can change if the body is not absolutely
rigid. If the satellite is rotating slightly off the symmetry axis, each part
of the body undergoes a time varying centripetal acceleration. The
spacecraft warps and bends under the time varying force, and energy is
dissipated by internal friction in the structure. The kinetic energy of
rotation must therefore decrease. From Eq. (7.20), if the body is rotating
about a single principal axis, Krot = L2/2I. Krot is a minimum for the
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axis with greatest moment of inertia, and the motion is stable around that
axis. For the cylindrical spacecraft, the initial axis of rotation had the
minimum moment of inertia, and the motion was not stable.

A thin disk spinning about its cylindrical axis is inherently stable
because the other two moments of inertia are only half as large. A
cigar-shaped craft is unstable about its long axis and only neutrally stable
about the transverse axes; there is no single axis of maximum moment
of inertia.

Rotation about a Fixed Point

We showed at the beginning of this section that in analyzing the
motion of a rotating and translating rigid body it is always correct
to calculate torque and angular momentum about the center of
mass. In some applications, however, one point of a body is
fixed in space, like the pivot point of a gyroscope on a pylon. It
is often convenient to analyze the motion using the fixed point as
origin, since the center of mass motion need not be considered
explicitly, and the constraint force at the pivot produces no
torque.

Taking the origin at the fixed point, let ry be the position vector
of particle ray and let R = X\ + Y] + Zk be the position vector
of the center of mass. The torque about the origin is

<c = 2ry X fy,

where fy is the force on ray. If the angular velocity of the body
is w, the angular momentum about the origin is

L = 2 ry X mjTj

= 2r,- X ray(w X ry).

This has the same form as Eq. (7.6), which we evaluated earlier
in this section. Taking over the results wholesale, we have

L = lo>

where

. . = 2ray(l/y2 + Zy2)

xy

etc.
Ixy = —

Although this result is identical in form to Eq. (7.13), the com-
ponents of I are now calculated with respect to the pivot point
rather than the center of mass.
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Once the tensor of inertia about the center of mass, l0, is
known, I about any other origin can be found from a generaliza-
tion of the parallel axis theorem of Example 6.9. Typical results,
the proof of which we leave as a problem, are

etc.
U - MXY

7.21

Consider, for example, a sphere of mass M and radius b cen-
tered on the z axis a distance I from the origin. We have
Ixx = f M62 + Ml\ Ivy = iMb2 + Ml*, Izz = f M62.

7.7 Advanced Topics in the Dynamics of Rigid Body Rotation

Introduction

In this section we shall attack the general problem of rigid body
rotation. However, none of the results will be needed in subse-
quent chapters, and the section can be skipped without loss of
continuity.

The fundamental problem of rigid body dynamics is to find the
orientation of a rotating body as a function of time, given the
torque. The problem is difficult because of the complicated
relation L = l« between angular momentum and angular velocity.
We can make the problem look simpler by taking our coordinate
system coincident with the principal axes of the body. With
respect to principal axes, the tensor of inertia I is diagonal in
form, and the components of L are

Lx =

L z = Izza>z.

However, the crux of the problem is that the principal axes are
fixed to the body, whereas we need the components of L with
respect to axes having a fixed orientation in space. As the body
rotates, its principal axes move out of coincidence with the space-
fixed system. The products of inertia are no longer zero in the
space-fixed system and, worse yet, the components of I vary with
time.

The situation appears hopelessly tangled, but if the principal
axes do not stray far from the space-fixed system, we can find
the motion using simple vector arguments. Leaving the general
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case for later, we illustrate this approach by finding the torque-
free motion of a rigid body.

Torque-free Precession: Why the Earth Wobbles

If you drop a spinning quarter with a slight flip, it will fall with a
wobbling motion; the symmetry axis tends to rotate in space, as
the sketch shows. Since there are no torques, the motion is
known as torque-free precession.

Torque-free precession is a characteristic mode of rigid body
motion. For example, the spin axis of the earth moves around
the polar axis because of this effect. The physical explanation
of the wobbling motion is related to our observation that L need
not be parallel to G>. If there are no torques on the body, L is
fixed in space, and w must move, as will be shown.

To avoid mathematical complexity, consider the special case of
a cylindrically symmetric rigid body like a coin or an air suspension
gyroscope. We shall assume that the precessional motion is
small in amplitude, in order to apply small angle approximations.

Suppose that the body has a large spin angular momentum
L = Isus along the main symmetry axis, where Is is the moment
of inertia and cos is the angular velocity about the symmetry axis.
Let the body have small angular velocities about the other trans-
verse axes.

Suppose that Ls is always close to the z axis and makes angles
6X « 1 and 6V « 1 with the x and y axes. Note 7.1 on infinitesimal
rotations shows that to first order, rotations about each axis can
be considered separately. The contribution to Lx from rotation
about the x axis is Lx = d(IxxBx)/dt = Ixx ddx/dt. We have treated
Ixx as a constant. The justification is that moments of inertia
about principal axes are constant to first order for small angular
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displacements. Similarly, the products of inertia remain zero to
first order. (The proofs are left as a problem.) Rotation about
y also contributes to Lx by giving Ls a component Ls sin By in the
x direction. Adding the two contributions, we have

r dd* • r •

Lx = Ixx — + Ls sin By.
dt

Similarly,

T - T dQy T cin *
Ljy lyy ~T" ±J8 Sill Ux.

dt
By symmetry, Ixx = Iyy = 7±. For small angles, sin B = B and
cos B = 1, to first order. Hence

x = I±^ + Lsdy 121a
at

y =ljjt~ Lsdx. 7.226

To the same order of approximation,

L z = L8

= I8o>8. 7.23

Since the torque is zero, dL/dt = 0. Equation (7.23) then gives
Ls = constant, o8 = constant, and Eqs. (7.22) yield

If we let ux = ddjdt, u>v = ddv/dt, Eqs. (7.24) become

7X ^ + L,wy = 0 7.25a

Jj. ^T - L&, = 0. 7.256
dt

If we differentiate Eq. (7.25a) and substitute the value for do)y/dt
in Eq. (7.25b), we obtain
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or

+ 7*«» = 0, 7.26

where

I±

Equation (7.26) is the familiar equation for simple harmonic motion.
The solution is

o)x = A sin (yt + <t>), 7.27

where A and </> are arbitrary constants. Substituting this in Eq.
(7.25a) gives

= - ± - A 7 COS (yt + </>),
i

or

= A cos (YZ + <t>).

By integrating Eqs. (7.27) and (7.28) we obtain

7.28

6X = — COS (yt + <t>) + dx0
7

By = - - sin (yt +</>) + ByOt
7

7.29

where 6x0 and ^ 0 are constants of integration. The first terms
of Eq. (7.29) reveal that the axis rotates around a fixed direc-
tion in space. If we take that direction along the z axis, then
Oxo = Oyo = 0. Assuming that at t = 0 dx = 0O, Bv = 0, we have

Bx = d0 cos yt

6y = Bo sin yt, 7.30

y where we have taken A/y = Bo, <t> = 0.
Equation (7.30) describes torque-free precession. The fre-

quency of the precessional motion is y = usls/l±. For a body
flattened along the axis of symmetry, such as the oblate spheroid
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shown, Is > I± and y > o>s. For a thin coin, I8 = 2I± and
7 = 2cos. Thus, the falling quarter described earlier wobbles
twice as fast as it spins.

The earth is an oblate spheroid and exhibits torque-free pre-
cession. The amplitude of the motton is small; the spin axis
wanders about the polar axis by about 5 m at the North Pole.
Since the earth itself is spinning, the apparent rate of precession
to an earthbound observer is

7' = 7 - o)s

L - 1 7.31

For the earth, (I8 — I±)/I± = ^ , and the precessional motion
should have a period of 300 days. However, the motion is quite
irregular with an apparent period of about 430 days. The fluctua-
tions arise from the elastic nature of the earth, which is significant
for motions this small.

Note 7.2 on the nutating gyroscope illustrates another applica-
tion of the small angle approximation that we have used.

Ad

Euler's Equations

We turn now to the task of deriving the exact equations of motion
for a rigid body. In order to find dL/dt, we shall calculate the
change in the components of L in the time interval from t to
t + At, using the small angle approximation. The results are
correct only to first order, but they become exact when we take
the limit A£->0.

Let us introduce an inertial coordinate system which coincides
with the instantaneous position of the body's principal axes at
time t. We label the axes of the inertial system 1, 2, 3. Let the
components of the angular velocity w at time t relative to the 1, 2,
3 system be o>i, o>2, o>3. At the same instant, the components of
L are L\ = /i<oi, L2 = /2co2, Lz = /3co3, where / 1 , / 2 , Iz are the
moments of inertia about the three principal axes.

In the time interval A£, the principal axes rotate away from the
1, 2, 3 axes. To first order, the rotation angle about the 1 axis is
A0i = o>i A£; similarly, A02 = o>2 AZ, A03 = co3 A£. The correspond-
ing change ALi = Lx(t + At) — Lx(Jt) can be found to first order
by treating the three rotations one by one, according to Note 7.1
on infinitesimal rotations. There are two ways L i can change.
If coi varies, /io>i will change. In addition, rotations about the
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3

-e
Ad,

A63

-i^yAdi

other two axes cause L2 and L3 to change direction, and this can
contribute to angular momentum along the first axis.

The first contribution to ALi is from A(7icoi). Since the com-
ponents of I are constant to first order for small angular displace-
ments about the principal axes, A(7ia>i) = 7i Aa>i.

To find the remaining contributions to ALi, consider first rota-
tion about the 2 axis through angle A02. This causes L i and L3

to rotate as shown. The rotation of L\ causes no change along
the 1 axis to first order. However, the rotation of L3 contributes
L3 A02 = 73co3 A02 along the 1 axis. Similarly, rotation about the
3 axis contributes —L2A03 = — 72co2 A03 to ALi.

Adding all the contributions gives

ALi = 7i AOJI + 73co3 A02 — 72co2 A03.

2 Dividing by A£ and taking the limit AZ —> 0 yields

dTj\ dooi
— = 7i —- + (73 — 72)co3co2.
at at

The other components can be treated in a similar fashion, or we
can simply relabel the subscripts by 1 —> 2, 2—» 3, 3—> 1. We
find

dL2
 do)2

— = ±2 — + Ui —
dt dt

37 = 3̂ j +
dt dt

Since * = dL/dt,

at
( 7 3 — 72)OJ3C02

T2 = 72 at
7.32

rz = i3 + (i2at

where n, r2f r3 are the components of z along the axes of the
inertial system 1, 2, 3. These equations were derived by Euler
in the middle of the eighteenth century and are known as Euler's
equations of rigid body motion.

Euler's equations are tricky to apply; thus, it is important to
understand what they mean. At some time t we set up the 1,
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Time t'

2, 3 inertial system to coincide with the instantaneous directions
of the body's principal axes, n, r2, r3 are the components of
torque along the 1, 2, 3 axes at time t. Similarly, coi, co2, co3 are
the components of o along the 1, 2, 3 axes at time t, and dui/dt,
du2/dt, doiz/dt are the instantaneous rates of change of these
components. Euler's equations relate these quantities at time
t. To apply Euler's equations at another time t\ we have to
resolve T and G> along the axes of a new inertial system 1', 2', 3'
which coincides with the principal axes at t'.

The difficulty is that Euler's equations do not show us how to
find the orientation of these coordinate systems in space. Essen-
tially, we have traded one problem for another; in the familiar
x, y, z laboratory coordinate system, we know the disposition of
the axes, but the components of the tensor of inertia vary in an
unknown way. In the 1, 2, 3 system, the components of I are
constant, but we do not know the orientation of the axes. Euler's
equations cannot be integrated directly to give angles specifying
the orientation of the body relative to the x, y, z laboratory sys-
tem. Euler overcame this difficulty by expressing coi, co2, co3 in
terms of a set of angles relating the principal axes to the axes of
the x, y, z laboratory system.

In terms of these angles, Euler's equations are a set of coupled
differential equations. The general equations are fairly compli-
cated and are discussed in advanced texts. Fortunately, in many
important applications we can find the motion from Euler's equa-
tions by using straightforward geometrical arguments. Here are
a few examples.

Example 7.16 Stability of Rotational Motion

In principle, a pencil can be balanced on its point. In practice, the pencil
falls almost immediately. Although a perfectly balanced pencil is in equi-
librium, the equilibrium is not stable. If the pencil starts to tip because
of some small perturbing force, the gravitational torque causes it to tip
even further; the system continues to move away from equilibrium. A
system is stable if displacement from equilibrium gives rise to forces
which drive it back toward equilibrium. Similarly, a moving system is
stable if it responds to a perturbing force by altering its motion only
slightly. In contrast, an unstable system can have its motion drastically
changed by a small perturbing force, possibly leading to catastrophic
failure.

A rotating rigid body can exhibit either stable or unstable motion
depending on the axis of rotation. The motion is stable for rotation
about the axes of maximum or minimum moment of inertia but unstable
for rotation about the axis with intermediate moment of inertia. The
effect is easy to show: wrap a book with a rubber band and let it fall spin-
ning about each of its principal axes in turn. I is maximum about axis
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a and minimum about axis c; the motion is stable if the book is spun
about either of these axes. However, if the book is spun about axis b,
it tends to flop over as it spins, generally landing on its broad side.

To explain this behavior, we turn to Euler's equations. Suppose that
the body is initially spinning with coi = constant and co2 = 0, co3 = 0, and
that immediately after a short perturbation, co2 and co3 are different from
zero but very small compared with coi. Once the perturbation ends, the
motion is torque-free and Euler's equations are:

do)\

at

do)2
12 — h (/1 —

dt

dooz
— h (h — /I)OJICO2 = 0.
dt

Since co2 and o>3 are very small at first, we can initially neglect the
second term in Eq. (1). Therefore h dooi/dt = 0, and cui is constant.

If we differentiate Eq. (2) and substitute the value of doo3/dt from Eq.
(3), we have

/1 - /3X/2 ~ /1)

dt2 = 0

dco2 . A n

— + AC02 = 0

where

A = (/i - /iX/i - h) _

Mi

If /1 is the largest or the smallest moment of inertia, A > 0 and Eq. (4)
is the equation for simple harmonic motion. co2 oscillates at frequency
\/A with bounded amplitude. It is easy to show that co3 also undergoes
simple harmonic motion. Since OJ2 and w3 are bounded, the motion is
stable. (It corresponds to the torque-free precession we calculated
earlier.)

If 7i is the intermediate moment of inertia, A < 0. In this case a>2 and
o)3 tend to increase exponentially with time, and the motion is unstable.

Example 7.17 The Rotating Rod

Consider a uniform rod mounted on a horizontal frictionless axle through
its center. The axle is carried on a turntable revolving with constant
angular velocity 12, with the center of the rod over the axis of the turn-
table. Let 6 be the angle shown in the sketch. The problem is to find
6 as a function of time.
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To apply Euler's equations, let principal axis 1 of the rod be along the
axle, principal axis 2 be along the length of the rod, and principal axis 3
be in the vertical plane perpendicular to the rod. coi = 0, and by resolv-
ing ft along the 2 and 3 directions we find co2 = 12 sin 6, w3 = ft cos 6.

Since there is no torque about the 1 axis, the first of Euler's equations
gives

h'Q + (h - 72)ft
2 sin 6 cos 6 = 0

20 + r 3 ~" l2\ ft* sisin 2(9 = 0. 1

(We have used sin 6 cos 6 = i sin 20.)
Since 73 > 72, this is the equation for pendulum motion in the variable

26. For oscillations near the horizontal, sin 26 ~ 26 and Eq. (1) becomes

0.

The motion is simple harmonic with angular frequency V ( / 3 — h)/Ii ^«

Example 7.18 Euler's Equations and Torque-free Precession

1 We discussed the torque-free motion of a cylindrically symmetric body
earlier using the small angle approximation. In this example we shall
obtain an exact solution by using Euler's equations.

Let the axis of cylindrical symmetry be principal axis 1 with moment of
inertia Ix. The other two principal axes are perpendicular to the 1 axis,
and 72 = 73 = 7±. From the first of Euler's equations

+ (73 - /2)co2co3,

we have

which gives

coi = constant = o>«.
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Principal axes 2 and 3 revolve at the constant angular velocity cos about
the 1 axis.

The remaining Euler's equations are

0 =

0 =

dt

+ (/i - /l)0W2.

Differentiating the first equation and using the second to eliminate d<as/dt
gives

The angular velocity component co2 executes simple harmonic motion with
angular frequency

r =

Thus, co2 is given by co2 = co± cos H where the amplitude co± is deter-
mined by initial conditions. Then, if Ix > I±, Eq. (1) gives

1 du2
CO3 =

r dt
= u± sin 17.

As the drawing shows, co2 and C03 are the components of a vector G>± which
rotates in the 2-3 plane at rate T. Thus, an observer fixed to the
body would see G> rotate relative to the body about the 1 axis at angular
frequency T. Since the 1, 2, 3 axes are fixed to the body and the body
is rotating about the 1 axis at rate cos, the rotational speed of w to an
observer fixed in space is

r + cos = —- ws.

Euler's equations have told us how the angular velocity moves relative
to the body, but we have yet to find the actual motion of the body in
space. Here we must use our ingenuity. We know the motion of <o
relative to the body, and we also know that for torque-free motion, L is
constant. As we shall show, this is enough to find the actual motion of
the body.

The diagram at the top of the next page shows o> and L at some
instant of time. Since L cos a = Iicos, and ous and L are constant, a
must be constant as well. Hence, the relative position of all the vectors
in the diagram never changes. The only possible motion is for the
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diagram to rotate about L with some "precessional" angular velocity Slp.
(Bear in mind that the diagram is moving relative to the body; ftp is
greater than cos.)

The remaining problem is to find ttp. We have shown thatca precesses
about G>s in space at rate F + cos. To relate ttjis to Qp, resolve Qp into
a vector A along o>5 and a vector B perpendicular to <*)s. The magnitudes
are A = fip cos a, B = Qp sin a. The rotation A turns <o about <*>s, but
the rotation B does not. Hence the rate at which G> precesses about <os

is top cos a. Equating this to F + o>s,

tip cos a = F + o)s

h

or

I± cos a

The precessional angular velocity Slp represents the rate at which the
symmetry axis rotates about the fixed direction L. It is the frequency
of wobble we observe when we flip a spinning coin. Earlier in this sec-
tion we found that the rate at which the symmetry axis rotates about a
space-fixed direction is Iicos/I in the small angle approximation. The
result agrees with 12P in the limit a —> 0.

Note 7.1 Finite and Infinitesimal Rotations

In this note we shall demonstrate that finite rotations do not commute,
but that infinitesimal rotations do. By an infinitesimal rotation we mean
one for which all powers of the rotation angle beyond the first can be
neglected.

Consider rotation of an object through angle a about an axis na followed
by a rotation through ft about axis n^. It is not possible to specify the
orientation of the body by a vector because if the rotations are performed
in opposite order, we do not obtain the same final orientation. To show
this, we shall consider the effect of successive rotations on a vector r.
Let r« be the result of rotating r through a about na, and rap be the result
of rotating xa through ft about n^. We shall show that

However, we shall find that for a « 1 , ft « 1 , ra& = r0a to first order, and
there is therefore no ambiguity in the orientation angle vector for infini-
tesimal rotations.

Consider the effect of successive rotation on a vector initially along the
x axis, r = ri, first through angle a about the z axis and then through
angle ft about the y axis. Although this is a special case, it illustrates the
important features of a general proof.
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First rotation: through angle a about z axis.

r = r\

ra = r cos o:i + r sin a],

since |ra| = |r| = r.

Second rotation: through angle ($ about y axis.
The component r sin a j is unchanged by this rotation.

fa/3 = r cos a (cos jSf — sin /3k) + r sin a j

= r cos a cos /?i -f- T sin a:j — r cos a sin 0k 1

To find r/3a, we go through the same argument in reverse order. The
result is

f/3a = T cos a cos /3i + r cos 0 sin aj — r sin /3k. 2

From Eqs. (1) and (2), râ  and rpa differ in the y and 2 components. Sup-
pose that we represent the angles by Aa and A/3, as in the lower two
drawings, and take Ao :« 1, A/3 <C 1. If we neglect all terms of second
order and higher, so that sin A0 « Ad, cos A0 « 1, Eq. (1) becomes

r«/3 = rl + r Aoj - r

Equation (3) becomes

rpa = rf + r Aoij - r A/3k.

Hence râ  = r̂ a to first order for small rotations, and the vector

AS = AjSi + Aak

is well defined. In particular, the displacement of r is

Ar = Tfinai ^initial

= r Aa] - r A/3k = AO X r.

If the displacement occurs in time A£, the velocity is

dx
v = —

dt

= lim
A8Xr

= oXr,

where

G> = lim — •
M-+0 At

In our example, o = (dfi/dt)\ + (da/dt)k.
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Our results in Eq. (3) or (4) indicate that the effect of infinitesimal rota-
tions can be found by considering the rotations independently one at a
time. To first order, the effect of rotating r = r\ through Aa about z
is to generate a y component r Aa\. The effect of rotating r through
A/3 about y is to generate a z component, — r A/3k. The total change in
r to first order is the sum of the two effects,

Ar = r Aa:j — r A/3k,

in agreement with Eq. (3) or (4).

Note 7.2 More about Gyroscopes

In Sec. 7.3 we used simple vector arguments to discuss the uniform
precession of a gyroscope. However, uniform precession is not the
most general form of gyroscope motion. For instance, a gyroscope
released with its axle at rest horizontally does not instantaneously start
to precess. Instead, the center of mass begins to fall. The falling
motion is rapidly converted to an undulatory motion called nutation. If
the undulations are damped out by friction in the bearings, the gyroscope
eventually settles into uniform precession. The purpose of this note is
to show how nutation occurs, using a small angle approximation. (The
same method is used in Sec. 7.7 to explain torque-free precession.)

Consider a gyroscope consisting of a flywheel on a shaft of length I
whose other end is attached to a universal pivot. The flywheel is set
spinning rapidly and the axle is released from the horizontal. What
is the motion?

Since it is natural to consider the motion in terms of rotation about
the fixed pivot point, we introduce a coordinate system with its origin at
the pivot.

Assume for the moment that the gyroscope is not spinning but that
the axle is rotating about the pivot. In order to calculate the angular
momentum about the origin, we shall need a generalization of the parallel
axis theorem of Example 6.9. Consider the angular momentum due to
rotation of the axle about the z axis at rate co*. If the moment of inertia
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of the disk around a vertical axis through the center of mass is Izz, then
the moment of inertia about the z axis through the pivot is Izz + Ml2.
The proof of this is straightforward, and we leave it as a problem. If
we let Izz + Ml2 = Ip, then Lz = uzlp. By symmetry, the moment of
inertia about the x axis is Ixx + Ml2 = Ip, so that Lx = cox/p.

The results above are exact when the gyroscope lies along the y axis,
as in the drawing, and they are true to first order in angle for small
angles of tilt around the y axis.

(a) (b)

Now suppose that the flywheel is set spinning at rate co,. If the
moment of inertia along the axle is Ist then the spin angular momentum
is L8 = /,cos.

There are two kinds of contributions to the angular momentum asso-
ciated with small angular displacements from the y axis. From rotation
of the system as a whole with angular velocity co, we have angular momen-
tum contributions of the form Ipa). In addition, as the gyroscope moves
away from the y axis, components of Ls can be generated in the x and z
directions. For small angular displacements 0, such components will be
of the form Lsd.

For small angular displacements, 0X<3C1 about the x axis and 02<<C1
about the z axis, the rotations can be considered independently and their
effects added.

a. Rotation about the x Axis (fig. a)
Suppose that the axle has rotated about the x axis through angle 0X<3C 1,
and has instantaneous angular velocity cox. Then

Lx = Ipcox

Ly = Ls cos 6X « Ls 1

IJZ
 = Ls sin Bx ~ LS6X.

b. Rotation about the z Axis (fig. b)
For a rotation by 0Z<<C 1 about the z axis, a similar argument gives

Lx = —Ls sin 02 ~ —Lsdz

Ly = Ls cos 0z « Ls 2

Lt = Ipo)z.
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Equations (1) and (2) show that the rotations 6X and 62 leave Ly unchanged
to first order. However, the rotations give rise to first order contributions
to Lx and Lz. From Eqs. (1) and (2) we find

Lx = IpC

Ly = Ls

Lz = 7 > LS6X.

The instantaneous torque about the origin is

rx = -IW, 4

where I is the length of the axle and W is the weight of the gyro. Since
* = dl/dt, Eqs. (3) and (4) give

L5co, = -IW

Ls = 0

Lsoox = 0,

5a

56

5c

where we have used 6Z = o)2, Bx = cox.
Equation (56) assures us that the spin is constant, as we expect for a

flywheel with good bearings. If we differentiate Eq. (5a), we obtain

Ipo)x - Lswz = 0.

Substituting the result ug = —Lswx/Iv from Eq. (5c) gives

Ls
2

o)x + — o)x = 0.

If we let 7 = Ls/Ip = o)sIs/Ipi this becomes

Wx + 72w* = 0.

We have the familiar equation for simple harmonic motion. The solu-
tion is

cox = A cos (yt + 0), 6

where .4 and <p are arbitrary constants.
We can use Eq. (5a) to find w2:

IW Ip .
o>z = h — Ux-

Ls Ls

Substituting the result <hx = —Ay sin (7^ + <f>) from Eq. (6) gives

IW I
coe = - r Ay sin (7^ + <£)

Ls Ls
IW

= — - A sin (yt + *)• 7
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We can integrate Eqs. (6) and (7) to obtain

Bx = Bs\n(yt + <t>

IW
6Z = — t + B cos + «) + D,

8a

86

where B = A/y, and C, D are constants of integration.
The motion of the gyroscope depends on the constants B, <t>, C, and

D in Eq. (8), and these depend on the initial conditions. We consider
three separate cases.

CASE 1. UNIFORM PRECESSION
If we take B = 0, and C = D = 0, Eq. (8) gives

6X = 0

6Z = IW
Ls

This corresponds to the case of uniform precession we treated in Sec.
7.3. The rate of precession is ddg/dt = IW/LS, as in Eq. (7.2). If the
gyroscope is moving in uniform precession at t = 0, it will continue to
do so.

CASE 2. TORQUE-FREE PRECESSION
If we "turn off" gravity so that W is zero, then Eq. (8) gives, with
C = D = 0,

6X = B sin (7* +

0, = B cos (yt +

10

The tip of the axle moves in a circle about the y axis. The amplitude
of the motion depends on the initial conditions. This is identical to the
torque-free precession discussed in Sec. 7.7.

CASE 3. NUTATION
Suppose that the axle is released from rest along the y axis at t = 0.
The initial conditions at t = 0 on the x motion are (6X)O = (ddx/dt)o = 0.
From Eq. (8a) we obtain

Bsin <t> + C = 0

By cos 0 = 0.

Assuming for the moment that B is not zero, we have <f> = TT/2, C = —B.
Equation (86) then becomes

6,
IW

t - Bs\nyt +D.
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From the initial conditions on the z motion, (dz)o = (ddz/dt)0 = 0, we
obtain

D = 0

or

yLs

Inserting these results in Eq. (8) gives

Bx = - ^ (cos yt - 1)
yLs

9Z = - ^ (yt - sin 70-

11

Damped nutation

JUUUUL

The motion described by Eq. (11) is illustrated in the sketch. As time
increases, the tip of the axle traces out a cycloidal path. The dipping
motion of the axle is called nutation. The motion is easy to see with a
well-made gyroscope. Note that the initial motion of the axle is vertically
down; the gyro starts to fall when it is released. Eventually the nutation
dies out due to friction in the pivot, and the motion turns into uniform
precession, as shown in the second sketch. The axle is left with a slight
dip after the nutation is damped; this keeps the total angular momentum
about the z axis zero. The rotational energy of precession comes from
the fall of the centerof mass. Other nutational motions are also possible,
depending on the initial conditions; the lower two sketches show two
possible cases. These can all be described by Eq. (8) by suitable choices
of the constants.

We made the approximation that 0X<<C1, 6Z<£1, but because of pre-
cession, 6Z increases linearly with time, so that the approximation inevit-
ably breaks down. This is not a problem if we examine the motion for
one period of nutation. The nutational motion repeats itself whenever
yt = 2TT. The period of the nutation is T = 2?r/7. If dz is small during
one period, then we can mentally start the problem over at the end of
the period with a new coordinate system having its y axis again along the
direction of the axle. The restriction on 6Z is then that &T<<C 1, or

Our solution breaks down if the rate of precession becomes comparable
to the rate of nutation. More vividly, we require the gyroscope to nutate
many times as it precesses through a full turn.

In a toy gyroscope, friction is so large that it is practically impossible
to observe nutation. However, in the air suspension gyroscope, friction
is so small that nutation is easy to observe. The rotor of this gyroscope
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is a massive metal sphere which rests in a close fitting cup. The sphere
is suspended on a film of air which flows from an orifice at the bottom of
the cup. Torque is applied by the weight of a small mass on a rod pro-
truding radially from the sphere. The pictures below are photographs
of a stroboscopic light source reflected from a small bead on the end of
the rod. The three modes of precession are apparent; by studying the
distance between the dots you can discern the variation in speed of the
rod through the precession cycle.
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Problems 7.1 A thin hoop of mass M and radius R rolls without slipping about
the z axis. It is supported by an axle of length R through its center, as
shown. The hoop circles around the z axis with angular speed £2.

a. What is the instantaneous angular velocity o> of the hoop?

b. What is the angular momentum L of the hoop? Is L parallel to o>?
(Note: the moment of inertia of a hoop for an axis along its diameter is

7.2 A flywheel of moment of inertia 70 rotates with angular velocity coo

at the middle of an axle of length 21. Each end of the axle is attached to
a support by a spring which is stretched to length I and provides ten-
sion T. You may assume that T remains constant for small displace-
ments of the axle. The supports are fixed to a table which rotates at
constant angular velocity, 12, where 12<<C co0. The center of mass of the
flywheel is directly over the center of rotation of the table. Neglect
gravity and assume that the motion is completely uniform so that nuta-
tional effects are absent. The problem is to find the direction of the
axle with respect to a straight line between the supports.

. 2/
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7.3 A gyroscope wheel is at one end of an axle of length I. The other
end of the axle is suspended from a string of length L. The wheel is
set into motion so that it executes uniform precession in the horizontal
plane. The wheel has mass M and moment of inertia about its center
of mass 70. Its spin angular velocity is oos. Neglect the mass of the
shaft and of the string.

Find the angle 0 that the string makes with the vertical. Assume that
/? is so small that approximations like sin /3 ^ /? are justified.

7.4 In an old-fashioned rolling mill, grain is ground by a disk-shaped
millstone which rolls in a circle on a flat surface driven by a vertical shaft.
Because of the stone's angular momentum, the contact force with the
surface can be considerably greater than the weight of the wheel.

Assume that the millstone is a uniform disk of mass M, radius b, and
width w, and that it rolls without slipping in a circle of radius R with angular
velocity 0. Find the contact force. Assume that the millstone is closely
fitted to the axle so that it cannot tip, and that w<£ R.

Ans. clue. If 1226 = 2 g, the force is twice the weight

7.5 When an automobile rounds a curve at high speed, the loading
(weight distribution) on the wheels is markedly changed. For sufficiently
high speeds the loading on the inside wheels goes to zero, at which point
the car starts to roll over. This tendency can be avoided by mounting a
large spinning flywheel on the car.

a. In what direction should the flywheel be mounted, and what should
be the sense of rotation, to help equalize the loading? (Be sure that
your method works for the car turning in either direction.)

b. Show that for a disk-shaped flywheel of mass m and radius R, the
requirement for equal loading is that the angular velocity of the flywheel,
co, is related to the velocity of the car v by

co = 2v
mR*

where M is the total mass of the car and flywheel, and L is the height of
the center of mass of the car (including the flywheel) above the.road.
Assume that the road is unbanked.

7.6 If you start a coin rolling on a table with care, you can make it roll
in a circle. The coin "leans" inward, with its axis tilted. The radius of the
coin is b. The radius of the circle traced by the coin's center of mass
is R, and the velocity of its center of mass is v. The coin rolls without
slipping. Find the angle <t> that the coin's axis makes with the horizontal. You
may use the small angle approximations sin <£ = </>, cos 0 = 1, and terms
of order <j>2 are negligible.

Ans. 0 = 3v*/2gR
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7.7 A thin hoop of mass M and radius R is suspended from a string
through a point on the rim of the hoop. If the support is turned with
high angular velocity co, the hoop will spin as shown, with its plane nearly
horizontal and its center nearly on the axis of the support. The string
makes angle a with the vertical.

a. Find, approximately, the small angle f3 between the plane of the
hoop and the horizontal.

b. Find, approximately, the radius of the small circle traced out by
the center of mass about the vertical axis. (With skill you can demon-
strate this motion with a rope. It is a favorite cowboy lariat trick.)

7.8 A child's hoop of mass M and radius b rolls in a straight line with
velocity v. Its top is given a light tap with a stick at right angles to the
direction of motion. The impulse of the blow is I.

a. Show that this results in a deflection of the line of rolling by angle
<j> = I/Mv, assuming that the gyroscope approximation holds and neg-
lecting friction with the ground.

b. Show that the gyroscope approximation is valid provided F <
where F is the peak applied force. °

7.9 This problem involves investigating the effect of the angular momen-
tum of a bicycle's wheels on the stability of the bicycle and rider. Assume
that the center of mass of the bike and rider is height 21 above the ground.
Each wheel has mass m, radius I, and moment of inertia ml2. The bicycle
moves with velocity V in a circular path of radius R. Show that it leans
through an angle given by

2Mv2

tan <t> = —
Rg M

where M is the total mass.
The last term in parentheses would be absent if angular momentum

were neglected. Do you think that it is important? How important is
it for a bike without a rider?

7.10 Latitude can be measured with a gyro by mounting the gyro with
its axle horizontal and lying along the east-west axis.

a. Show that the gyro can remain stationary when its spin axis is
parallel to the polar axis and is at the latitude angle X with the horizontal.

b. If the gyro is released with the spin axis at a small angle to the
polar axis show that the gyro spin axis will oscillate about the polar axis
with a frequency coosc = V / ico s O e / / x , where I\ is the moment of inertia
of the gyro about its spin axis, Ix is its moment of inertia about the fixed
horizontal axis, and Qe is the earth's rotational angular velocity.

What value of a>O8C is expected for a gyro rotating at 40,000 rpm, assum-
ing that it is a thin disk and that the mounting frame makes no contribu-
tion to the moment of inertia?
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7.11 A particle of mass m is located at x = 2, y = 0, z = 3.

a. Find its moments and products of inertia relative to the origin.

b. The particle undergoes pure rotation about the z axis through a
small angle a. Show that its moments and products of inertia are
unchanged to first order in a if a<<C 1.

I1
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8.1 Introduction

In discussing the principles of dynamics in Chap. 2, we stressed
that Newton's second law F = ma holds true only in inertial coor-
dinate systems. We have so far avoided noninertial systems in
order not to obscure our goal of understanding the physical nature
of forces and accelerations. Since that goal has largely been
realized, in this chapter we turn to the use of noninertial systems.
Our purpose is twofold. By introducing noninertial systems we
can simplify many problems; from this point of view, the use
of noninertial systems represents one more computational tool.
However, consideration of noninertial systems enables us to
explore some of the conceptual difficulties of classical mechanics,
and the second goal of this chapter is to gain deeper insight into
Newton's laws, the properties of space, and the meaning of
inertia.

We start by developing a formal procedure for relating observa-
tions in different inertial systems.

8.2 The Galilean Transformations

In this section we shall show that any coordinate system moving
uniformly with respect to an inertial system is also inertial. This
result is so transparent that it hardly warrants formal proof.
However, the argument will be helpful in the next section when
we analyze noninertial systems.

Suppose that two physicists, a and 0, set out to observe a series
of events such as the position of a body of mass m as a function
of time. Each has his own set of measuring instruments and each
works in his own laboratory, a has confirmed by separate exper-
iments that Newton's laws hold accurately in his laboratory. His
reference frame is therefore inertial. How can he predict whether
or not 0's system is also inertial?

For simplicity, a and 0 agree to use cartesian coordinate systems
with identical scale units. In general, their coordinate systems do
not coincide. Leaving rotations for later, we suppose for the time
being that the systems are in relative motion but that correspond-
ing axes are parallel. Let the position of mass m be given by ra

in a's system, and r# in /3's system. If the origins of the two sys-
tems are displaced by S, as shown in the sketch, then

r0 = ra - S. 8.1

If physicist a sees the mass accelerating at rate aa = ra, he con-
cludes from Newton's second law that there is a force on m given
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by

Fa = maa.

Physicist 0 observes m to be accelerating at rate afi, as if it were
acted on by a force

F̂  = map.

What is the relation between Fp and the true force F« measured
in an inertial system?

It is a simple matter to relate the accelerations in the two sys-
tems. Successive differentiation with respect to time of Eq. (8.1)
yields

v,? = v a - V

ap = aa - A. 8.2

If V = S is constant, the relative motion is uniform and A = 0.
In this case ap = ap, and

Fp = map = raaa

= Fa.

The force is the same in both systems. The equations of motion
in a system moving uniformly with respect to an inertial system
are identical to those in the inertial system. It follows that all
systems translating uniformly relative to an inertial system are
inertial. This simple result leads to something of an enigma.
Although it would be appealing to single out a coordinate system
absolutely at rest, there is no dynamical way to distinguish one
inertial system from another. Nature provides no clue to abso-
lute rest.

We have tacitly made a number of plausible assumptions in
the above argument. In the first place, we have assumed that
both observers use the same scale for measuring distance. To
assure this, a and /? must calibrate their scales with the same
standard of length. If a determines that the length of a certain
rod at rest in his system is La, we expect that p will measure the
same length. This is indeed the case if there is no motion between
the two systems. However, it is not generally true. If 0 moves
parallel to the rod with uniform velocity v, he will measure a length
Lp = La(l — v2/c2y, where c is the velocity of light. This result
follows from the theory of special relativity. The contraction of
the moving rod, known as the Lorentz contraction, is discussed
in Sec. 12.3.
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A second assumption we have made is that time is the same in
both systems. That is, if a determines that the time between two
events is Ta, then we assumed that p will observe the same inter-
val. Here again the assumption breaks down at high velocities.
As discussed in Sec. 13.3, 0 finds that the interval he measures is
Tp = Ta/(1 — v2/c2)K Once again nature provides an unexpected
result.

The reason these results are so unexpected is that our notions
of space and time come chiefly from immediate contact with the
world around us, and this never involves velocities remotely near
the velocity of light. If we normally moved wfth speeds approach-
ing the velocity of light, we would take these results for granted.
As it is, even the highest "everyday" velocities are low compared
with the velocity of light. For instance, the velocity of an arti-
ficial satellite around the earth is about 8 km/s. In this case
v2/c2 « 10~9, and length and time are altered by only one part
in a billion.

A third assumption is that the observers agree on the value
of the mass. However, mass is defined by experiments which
involve both time and distance, and so this assumption must
also be examined. As mentioned in our discussion of momen-
tum, if an object at rest has mass m0, the most useful quantity
corresponding to mass for an observer moving with velocity v is
m = Mo/0- — v2/c2)K

Now that we are aware of some of the complexities, let us defer
consideration of special relativity until Chaps. 11 to 14 and for the
time being limit our discussion to situations where v « c. In this
case the classical ideas of space, time, and mass are valid to high
accuracy. The following equations then relate measurements
made by a and (3, provided that their coordinate systems move
with uniform relative velocity V. We choose the origins of the
coordinate systems to coincide at t = 0 so that S = ML Then
from Eq. (8.1) we have

r/3 = ra _ w 8.3

The time relation is generally assumed implicitly.
This set of relations, called transformations, gives the prescription

for transforming coordinates of an event from one coordinate sys-
tem to another. Equations (8.3) transform coordinates between
inertial systems and are known as the Galilean transformations.
Since force is unchanged by the Galilean transformations, observ-
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ers in different inertial systems obtain the same dynamical equa-
tions. It follows that the forms of the laws of physics are the
same in all inertial systems. Otherwise, different observers would
make different predictions; for instance, if one observer predicts
the collision of two particles, another observer might not. The
assertion that the forms of the laws of physics are the same in
all inertial systems is known as the principle of relativity. Although
the principle of relativity played only a minor role in the develop-
ment of classical mechanics, its role in Einstein's theory of rela-
tivity is crucial. This is discussed further in Chap. 11, where it is
also shown that the Galilean transformations are not universally
valid but must be replaced by a more general transformation law,
the Lorentz transformation. However, the Galilean transforma-
tions are accurate for v « c, and we shall take them to be exact
in this chapter.

8.3 Uniformly Accelerating Systems

Next we turn our attention to the appearance of physical laws to
an observer in a system accelerating at rate A with respect to an
inertial system. To simplify notation we shall drop the subscripts
a and p and label quantities in noninertial systems by primes.
Thus, Eq. (8.2), â  = aa — A, becomes

a' = a - A,

where A is the acceleration of the primed system as measured in
the inertial system.

In the accelerating system the apparent force is

F' = ma'

= ma — mA.

ma is the true force F due to physical interactions. Hence,

F' = F - mA.

We can write this as

F' = F + Ffict,

where

Fnct = - m A .
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Ffict is called a fictitious force.1 The fictitious force experienced
in a uniformly accelerating system is uniform and proportional to
the mass, like a gravitational force. However, fictitious forces
originate in the acceleration of the coordinate system, not in inter-
action between bodies.

Here are two examples illustrating the use of fictitious forces.

Example 8.1 The Apparent Force of Gravity

A small weight of mass m hangs from a string in an automobile which
accelerates at rate A. What is the static angle of the string from the
vertical, and what is its tension?

We shall analyze the problem both in an inertial frame and in a frame
accelerating with the car.

Inertial system System accelerating with auto

( i m

W

T cos 0 -

T sin

tan

A^

Acceleration = A

W = 0

6=MA

T=M(g2

A_
' g

+ A2)"2

Acceleration = 0

W

T cos 6 - W = 0

T sin 0 - Ff i c t = 0

tan 0 = -
g

T= M(g2 +A2)112

From the point of view of a passenger in the accelerating car, the ficti-
tious force acts like a horizontal gravitational force. The effective gravi-
tational force is the vector sum of the real and fictitious forces. How
would a helium-filled balloon held on a string in the accelerating car
behave?
1 Sometimes Ffict is called an inertial force. However, the term fictitious force
more clearly emphasizes that Ffict does not arise from physical interactions.
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The fictitious force in a uniformly accelerating system behaves
exactly like a constant gravitational force; the fictitious force is
constant and is proportional to the mass. The fictitious force
on an extended body therefore acts at the center of mass.

Example 8.2 Cylinder on an Accelerating Plank

A cylinder of mass M and radius R rolls without slipping on a plank
which is accelerated at the rate A. Find the acceleration of the cylinder.

The force diagram for the horizontal force on the cylinder as viewed
I *A in a system accelerating with the plank is shown in the sketch, a' is the

acceleration of the cylinder as observed in a system fixed to the plank,
/ i s the friction force, and F{ict = MA with the direction shown.

The equations of motion in the system fixed to the accelerating plank
~d are

/ - Ffict = A/a'

Rf = - / o a ' .

The cylinder rolls on the plank without slipping, so

a'R = a'.

These yield

a' = — M + h/R2

Since 70 = MR2/2, and Ffict = MA, we have

a' = - f A.

The acceleration of the cylinder in an inertial system is

a = A + a'

Example 8.1 and 8.2 can be worked with about the same ease
in either an inertial or an accelerating system. Here is a problem
which Is rather complicated to solve in an inertial system (try it),
but which is almost trivial in an accelerating system.

Example 8.3 Pendulum in an Accelerating Car

Consider again the car and weight on a string of Example 8.1, but now
assume that the car is at rest with the weight hanging vertically. The
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car suddenly accelerates at rate A. The problem is to find the maxi-
mum angle <j> through which the weight swings. </> is larger than the
equilibrium position due to the sudden acceleration.

/////////////////////////A

-o T
f Gravity

Apparent
vertical

mA

mg

In a system accelerating with the car, the bob behaves like a pendulum
in a gravitational field in which "down" is at an angle <£0 from the true
vertical. From Example 8.1, </>o = arctan (A/g). The pendulum is ini-
tially at rest, so that it swings back and forth with amplitude #o about the
apparent vertical direction. Hence, </> = 2#0 = 2 arctan (A/g).

Gravity g

8.4 The Principle of Equivalence

The laws of physics in a uniformly accelerating system are identical
to those in an inertial system provided that we introduce a fictitious
force on each particle, Ffict = —mA. Ffict is indistinguishable
from the force due to a uniform gravitational field g = — A; both
the gravitational force and the fictitious force are constant forces
proportional to the mass. In a local gravitational field gf a free
particle of mass m experiences a force F = mg. Consider the
same particle in a noninertial system uniformly accelerating at
rate A = —g, with no gravitational field nor any other interac-
tion. The apparent force is Ffict = —mA = mg, as before. Is
there any way to distinguish physically between these different
situations?

The significance of this question was first pointed out by Ein-
stein, who illustrated the problem with the following "gedanken"
experiment. (A gedanken, or thought, experiment is meant to be
thought about rather than carried out.)

A man is holding an apple in an elevator at rest in a gravita-
tional field g. He lets go of the apple, and it falls with a down-
ward acceleration a = g. Now consider the same man in the
same elevator, but let the elevator be in free space accelerating
upward at rate a = g. The man again lets go of the apple, and
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it again appears to him to accelerate down at rate g. From his
point of view the two situations are identical. He cannot dis-
tinguish between acceleration of the elevator and a gravitational
field.

The point becomes even more apparent in the case of the ele-
vator freely falling in the gravitational field. The elevator and all
its contents accelerate downward at rate g. If the man releases
the apple, it will float as if the elevator were motionless in free
space. Einstein pointed out that the downward acceleration of
the elevator exactly cancels the local gravitational field. From the
point of view of an observer in the elevator, there is no way to
determine whether the elevator is in free space or whether it is
falling in a gravitational field.

This apparently simple idea, known as the principle of equiv-
alence, underlies Einstein's general theory of relativity, and all
other theories of gravitation. We summarize the principle of
equivalence as follows: there is no way to distinguish locally
between a uniform gravitational acceleration g and an accelera-
tion of the coordinate system A = —g. By saying that there is
no way to distinguish locally, we mean that there is no way to dis-
tinguish from within a sufficiently confined system. The reason
that Einstein put his observer in an elevator was to define such
an enclosed system. For instance, if you are in an elevator and
observe that free objects accelerate toward the floor at rate a,
there are two possible explanations:

1. There is a gravitational field down, g = a, and the elevator is
at rest (or moving uniformly) in the field.

2. There is no gravitational field, but the elevator is accelerating
up at rate a.

To distinguish between these alternatives, you must look out
of the elevator. Suppose, for instance, that you see an apple
suddenly drop from a nearby tree and fall down with acceleration
a. The most likely explanation is that you and the tree are at
rest in a downward gravitational field of magnitude g = a. How-
ever, it is conceivable that your elevator and the tree are both at
rest on a giant elevator which is accelerating up at rate a.

To choose between these alternatives you must look farther off.
If you see that you have an upward acceleration a relative to the
fixed stars, that is, if the stars appear to accelerate down at rate
a, the only possible explanation is that you are in a noninertial
system; your elevator and the tree are actually accelerating up.
The alternative is the impossible conclusion that you are at rest
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in a gravitational field which extends uniformly through all of
space. But such fields do not exist; real forces arise from inter-
actions between real bodies, and for sufficiently large separations
the forces always decrease. Hence it is most unphysical to invoke
a uniform gravitational field extending throughout space.

This, then, is the difference between a gravitational field and
an accelerating coordinate system. Real fields are local; at large
distances they decrease. An accelerating coordinate system is
nonlocal; the acceleration extends uniformly throughout space.
Only for small systems are the two indistinguishable.

Although these ideas may sound somewhat abstract, the next
two examples show that they have direct physical consequences.

Example 8.4 The Driving Force of the Tides

The earth is in free fall toward the sun, and according to the principle
of equivalence it should be impossible to observe the sun's gravitational
force in an earthbound system. However, the equivalence principle
applies only to local systems. The earth is so large that appreciable
nonlocal effects like the tides can be observed. In this example we shall
discuss the origin of the tides to see what is meant by a nonlocal effect.

The tides arise because of variations in the apparent gravitational field
of the sun and the moon at different points on the earth's surface.
Although the moon's effect is larger than the sun's, we shall consider
only the sun for purposes of illustration.

The gravitational field of the sun at the center of the earth is

Go = GMS— >
rs

2

where Ma is the sun's mass, rs is the distance between the center of the
sun and the center of the earth, and n is the unit vector from the earth
toward the sun. The earth accelerates toward the sun at rate A = Go-

If G(r) is the gravitational field of the sun at some point r on the earth,
where the origin of r is the center of the earth, then the force on mass
m at r is

F = mG(r).

The apparent force to an earthbound observer is

F' = F - wA = m[G(r) - Go].

The apparent field is

G'(r) = -
m
G(r) - Go.
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The drawing above shows the true field G(r) at different points on the
earth's surface. (The variations are exaggerated.) Ga is larger than Go
since a is closer to the sun than the center of the earth. Similarly, Gc is
less than Go. The magnitudes of Gb and Gc are approximately the same
as the magnitude of GOf but their directions are slightly different.

The apparent field G' = G — Go is shown in the drawing at left. We
now evaluate G' at each of the points indicated.

1. AND Gf
c

The distance from a to the center of the sun is rs — Re where Re is the
earth's radius. The magnitude of the sun's field at a is

GM,

(r. - R.f

Ga is parallel to Go. The magnitude of the apparent field at a is

Ga = Ga — Go

= GM, GM,

(r. - Re)1 r,2

_ QM.r i i
r.»L[l-(«.A.)l1 J

Since Re/re = 6.4 X 103 km/1.5 X 108 km = 4.3 X I ( r 5 « 1, we have

r,

where we have neglected terms of order (R,/r,y and higher.



350 NONINERTIAL SYSTEMS AND FICTITIOUS FORCES

The analysis at c is similar, except that the distance to the sun is
rs + Re instead of rs — Re. We obtain

r8

Note that Ĝ  and Gc point radially out from the earth.

2. Gft AND G'd

Points 6 and d are, to excellent approximation, the same distance from
the sun as the center of the earth. However, G& is not parallel to Go; the
angle between them is a « Re/rs = 4.3 X 10~5. To this approximation

G'h = Goa

_ r R e
— (TO

r8

By symmetry, G^ is equal and opposite to Gr
b. Both G& and G^ point

toward the center of the earth.
The sketch shows G'(r) at various points on the earth's surface. This

diagram is the starting point for analyzing the tides. The forces at a
and c tend to lift the oceans, and the forces at b and d tend to depress
them. If the earth were uniformly covered with water, the tangential
force components would cause the two tidal bulges to sweep around the
globe with the sun. This picture explains the twice daily ebb and flood
of the tides, but the actual motions depend in a complicated way on the
response of the oceans as the earth rotates, and on features of local
topography.

We can estimate the magnitude of tidal effects quite easily, as the next
example shows.

To the
sun

Example 8.5 Equilibrium Height of the Tide

The following argument is based on a model devised by Newton. Pre-
tend that two wells full of water run from the surface of the earth to the
center, where they join. One is along the earth-sun axis and the other
is perpendicular. For equilibrium, the pressures at the bottom of the
wells must be identical.

The pressure due to a short column of water of height dr is pg(r)dr,
where p is the density and g(r) is the effective gravitational field at r.
The condition for equilibrium is

hi . . , fh2
pg2(r) dr.

f

hi and h2 are the distances from the center of the earth to the surface
of the respective water columns. If we assume that the water is incom-
pressible, so that p is constant, then the equilibrium condition becomes
rJo g2(r) dr.
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The problem is to calculate the difference hi — h2 = Ahs, the height of
the tide due to the sun. We shall assume that the earth is spherical
and neglect effects due to its rotation.

The effective field toward the center of the earth along column 1 is
Qiix) = gix) — G[(r), where g(r) is the gravitational field of the earth and
G[(r) is the effective field of the sun along column 1. (The negative sign
indicates that G[(r) is directed radially out.) In the last example we
evaluated G[(Re) = G'a = 2GMsRe/rsK The effective field along column
1 is obtained by substituting r for Re. Hence,

= 2Cr,

where C = GMs/rsK

Putting these together, we obtain

£i(r) = G{r) - 2Cr.

By the same reasoning we obtain

= g(r) + G'2(r)

= Q(r) + Cr.

The condition for equilibrium is

l9(r) - 2Cr) dr = f*' [g(r) + Cr] dr,

or, rearranging,

foo 9(r) dr - J** g(r) dr = f^ iCr dr + J^ Cr dr.

We can combine the integrals on the left hand side to give / g(r) dr.
Jhi

Since hi and h2 are close to the earth's radius, g(r) can be taken as con-
stant in the integral. g(r) = g(Re) = g, the acceleration due to gravity at
the earth's surface. The integrals on the left become g(hi — h2) = g Aha.
The integrals on the right can be combined by taking hi ~ hi ~ Rei and
they yield / ° 3Cr dr = f(7#e2. The final result is

9 Ahs =

By using g = GM./R*, C = GMs/rs\ we find

From the numerical values

M8 = 1.99 X 1033 g r. = 1.49 X 1013 cm

Me = 5.98 X 1027 g Re = 6.37 X 108 cm,
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we obtain

Ahs = 24.0 cm.

The identical argument for the moon gives

,

3 Mm (Re\
Ahm = - — I — I Re-2 Me \rm/

Inserting Mm = 7.34 X 1025 g, rm = 3.84 X 1O10 cm, we obtain Ahm =
53.5 cm. We see that the moon's effect is about twice as large as the
sun's, even though the sun's gravitational field at the earth is about
200 times stronger than the moon's. The reason is that the tidal force
depends on the gradient of the gravitational field. The moon is so close
that its field varies considerably across the earth, whereas the field of
the distant sun is more nearly constant.

The strongest tides, called the spring tides, occur at the new and full
moon when the moon and sun act together. Midway between, at the
quarters of the moon, occur the weak neap tides. The ratio of the
driving forces in these two cases is

Ahspting _ Ahm + Ahs ^ 3

A/*neap Ahm — Ahs

The tides offer convincing evidence that the earth is in free fail toward
the sun. If the earth were attracted by the sun but not in free fall,
there would be only a single tide, whereas free fall results in two tides

Earth not acceleratin a ^a^f a s t n e fe tches illustrate. The fact that we can sense the sun's
gravitational field from a body in free fall does not contradict the prin-
ciple of equivalence. The height of the tide depends on the ratio of the
earth's radius to the sun's distance, Re/rs. However, for a system to
be local with respect to a gravitational field, the variation of the field must
be negligible over the dimensions of the system. The earth would be
a local system if Re were negligible compared with rs, but then there would
be no tides. Hence, the tides demonstrate that the earth is too large

Earth in free fall to constitute a local system in the sun's field.

There have been a number of experimental investigations of the

principle of equivalence, since in spite of its apparent simplicity,

far-reaching conclusions follow from it. For example, the principle

of equivalence demands that gravitational force be strictly pro-

portional to inertial mass. An alternative statement is that the

ratio of gravitational mass to inertial mass must be the same for

all matter, where the gravitational mass is the mass which enters

the gravitational force equation and the inertial mass is the mass

which appears in Newton's second law. Hence, if an object with



SEC. 8.4 THE PRINCIPLE OF EQUIVALENCE 353

gravitational mass Mgr and inertial mass Min interacts with an
object of gravitational mass Mo, we have

F = GMpMgTr

Since the acceleration is F/Afin,

* , - • •
 8

-
4

The equivalence principle requires MgT/Min to be the same for
all objects, since otherwise it would be possible to distinguish
locally between a gravitational field and an acceleration. For
instance, suppose that for object A, MgT/Min is twice as large as
for object B. If we release both objects in an Einstein elevator
and they fall with the same acceleration, the only possible con-
clusion is that the elevator is actually accelerating up. On the
other hand, if A falls with twice the acceleration of B, we know
that the acceleration must be due to a gravitational field. The
upward acceleration of the elevator would be distinguishable from
a downward gravitational field, in defiance of the principle of
equivalence.

The ratio MgT/Min is taken to be 1 in Newton's law of gravita-
tion. Any other choice for the ratio would be reflected in a dif-
ferent value for G, since experimentally the only requirement is
that G(MgT/Min) = 6.67 X 10"11 Nm2/kg2.

Newton investigated the equivalence of inertial and gravitational
mass by studying the period of a pendulum with interchangeable
bobs. The equation of motion for the bob in the small angle
approximation is

Miri'6 + MgTg6 = 0.

The period of the pendulum is

Newton's experiment consisted of looking for a variation in T
using bobs of different composition. He found no such change
and, from an estimate of the sensitivity of the method, concluded
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that MgT/Min is constant to better than one part in a thousand
for common materials.

The most compelling evidence for the principle of equivalence
comes from an experiment devised by the Hungarian physicist
Baron Roland von Eotvos at the turn of the*century. (The experi-
ments were completed in 1908 but the results were not published
until 1922, three years after von Eotvos' death.) The method and
technique of von Eotvos' experiment were refined by R. H. Dicke
and his collaborators at Princeton University, and it is this work,
completed in 1963, which we shall now outline.1

Consider a torsion balance consisting of two masses A and B
of different composition at each end of a bar which hangs from
a thin fiber so that it can rotate only about the vertical axis. The
masses are attracted by the earth and also by the sun. The
gravitational force due to the earth is vertical and causes no rota-
tion of the balance, but as we now show, the sun's attraction will
cause a rotation if the principle of equivalence is violated.

Assume that the sun is on the horizon, as shown in the sketch,
and that the horizontal bar is perpendicular to the sun-earth
axis. According to Eq. (8.4) the accelerations of the masses due
to the sun are

aA
= GM, tMgT(A)~\

GMa

where Ms is the gravitational mass of the sun, and rs is the dis-
tance between sun and earth. The acceleration of the masses
in a coordinate system fixed to the earth are

where a0 is the acceleration of the earth toward the sun. (Accel-
eration due to the rotation of the earth plays no role and we
neglect it.)

If the principle of equivalence is obeyed, aA = aB and the bar
has no tendency to rotate about the fiber. However, if the two
masses A and B have different ratios of gravitational to inertial
mass, then one will accelerate more than the other. The balance

1 An account of the experiment is given in an article by R. H. Dicke in Scientific
American, vol. 205, no. 84, December, 1961.
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will rotate until the restoring torque of the suspension fiber brings
it to rest. As the earth rotates, the apparent direction of the
sun changes; the equilibrium position of the balance moves with
a 24-h period.

Dicke's apparatus was capable of detecting the deflection
caused by a variation of 1 part in 1011 in the ratio of gravitational
to inertial mass, but no effect was found to this accuracy.

The principle of equivalence is generally regarded as a funda-
mental law of physics. We have used it to discuss the ratio of
gravitational to inertial mass. Surprisingly enough, it can also be
used to show that clocks run at different rates in different gravi-
tational fields. A simple argument showing how the principle of
equivalence forces us to give up the classical notion of time is
presented in Note 8.1.

8.5 Physics in a Rotating Coordinate System

The transformation from an inertial coordinate system to a rota-
ting system is fundamentally different from the transformation
to a translating system. A coordinate system translating uni-
formly relative to an inertial system is also inertial; the transforma-
tion leaves the laws of motion unaffected. In contrast, a uni-
formly rotating system is intrinsically noninertial. Rotational
motion is accelerating motion, and the laws of physics always
involve fictitious forces when referred to a rotating reference
frame. The fictitious forces do not have the simple form of a
uniform gravitational field, as in the case of a uniformly acceler-
ating system, but involve several terms, including one which is
velocity dependent. However, in spite of these complications,
rotating coordinate systems can be very helpful. In certain cases
the fictitious forces actually simplify the form of the equations of
motion. In other cases it is more natural to introduce the ficti-
tious forces than to describe the motion with inertial coordinates.
A good example is the physics of airflow over the surface of the
earth. It is easier to explain the rotational motion of weather
systems in terms of fictitious forces than to use inertial coordinates
which must then be related to coordinates on the rotating earth.

If a particle of mass m is accelerating at rate a with respect to
inertial coordinates and at rate arot with respect to a rotating coor-
dinate system, then the equation of motion in the inertial system
is

F = ma.
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We would like to write the equation of motion in the rotating sys-
tem as

If the accelerations of m in the two systems are related by

a = arot + A,
where A is the relative acceleration, then

Frot = m(a - A)

= F + Fflet,

where Ffict = —mA. So far the argument is identical to that in
Sec. 8.3. Our task now is to find A for a rotating system.

One way of evaluating A is to find the transformation connect-
ing the inertial and rotating coordinates and then to differentiate.
However, there is a much simpler and more general method, which
consists of finding a transformation rule relating the time deriva-
tives of any vector in inertial and rotating coordinates. In order
to motivate the derivation, we proceed by first finding the relation
between the velocity of a particle measured in an inertial system,
vin, and the velocity measured in a rotating system, vrot.

Time Derivatives and Rotating Coordinates

We are interested in pure rotation without translation, and so we
consider a rotating system x', y', zr whose origin coincides with
the origin of an inertial system x, y, z. Suppose, for the sake of
the argument, that the x't y', z' system is rotating so that the z
and z' axes always coincide. Thus, the angular velocity of the
rotating system, ft, lies along the z axis. Furthermore, let the x
and xr axes coincide instantaneously at time t. Imagine now that
a particle has position vector r(0 in the xz plane (and x'z' plane)
at time t.
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At time / + At, the position vector is r(t + At), and, from the
figure at left below the displacement of the particle in the inertial
system is

Ar = r(t + At) - r(t).

\
r'(t)\

r (t+At)

r'U)-r(t)

The situation is different for an observer in the rotating coordinate
system. He also notes the same final position vector r(t + At),
but in calculating the displacement he remembers that the initial
position vector in his coordinate system r'(t) was in the x'z' plane.
The displacement he measures relative to his coordinates is
Ar' = r(t + At) — r'(t), as in the figure at right above however, the
x'z' plane is now rotated away from its earlier position and, as
we see from the drawing at left, Ar and Ar' are not the same

Ar = Ar' + r'(t) - r(t).

Consequently, the velocity is different in the two frames.
Since r'(t) and r(t) differ only by a pure rotation, we can use

the result of Sec. 7.2 to write

r'(0 - r(0 =(Qxr)A*.

Hence,

Ar _ Ar'

At ~ At X ''

Taking the limit At —> 0 yields

= v r o 8.5

It is important to realize that Eq. (8.5) is a general vector relation;
the proof did not employ the special arrangement of axes we used
to illustrate the derivation.

An alternative way to write Eq. (8.5) is
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W dt rot
+ ft X r. 8.6

Since our proof used only the geometric properties of r, Eq. (8.6)
can immediately be generalized for any vector B, as the sketch
indicates.

8.7

When applying Eq. (8.7), keep in mind that B is instantaneously
the same in both systems; it is only the time rates of change which
differ. Note 8.2 presents an alternative derivation of Eq. (8.7).

Acceleration Relative to Rotating Coordinates

We can use Eq. (8.7) to relate the acceleration observed in a rota-
ting system, arot = (dvTOt/dt)Iot, to the acceleration in an inertial
system, ain = (dvin/d0in. Applying Eq. (8.7) to vin gives

_ /dvin

Using

Vin = Vrot + ft X r

we have

ain = - (vrot + ft X r) + ft X vrot + ft X (ft X r).
\_dt Jrot

We shall assume that ft is constant, since this is the case generally
needed in practice. Hence

a

or

/dr\
in = arot + ft X I —) + ft x vrot + ft x (ft X r),

W/rot

ain = arot + 2ft x vrot + ft x (ft X r). 8.8

Let us examine the various contributions to ain in Eq. (8.8).
The term arot is simply the acceleration measured in the rotating
coordinate system; there is nothing mysterious here. For exam-
ple, if we measure the acceleration of a car or plane in a coordinate
system fixed to the rotating earth, we are measuring arot.

To see the origin of the term ft x (ft X r), note first that ft x r
is perpendicular to the plane of ft and r and has magnitude ftp,

n x r where p is the perpendicular distance from the axis of rotation
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\ 0 = 0'
\
\
\

to the tip of r. Hence a x ( f l x r ) is directed radially inward
toward the axis of rotation and has magnitude O2p. It is a cen-
tripetal acceleration, arising because every point at rest in the
rotating system is actually moving in a circular path in inertial
space.

The term 2a x vrot is the general vector expression for the
Coriolis acceleration in three dimensions. If vrot is resolved into
components vrot|| and vrot±, parallel and perpendicular to a , res-
pectively, only vrot± contributes to 2a x vrot. Hence, the coriolis
acceleration is perpendicular to a . Here is how it arises:

The radial component p of vrot± contributes 212p in the tangential
direction to ain. This is simply the Coriolis term we found in Sec.
1.9 for motion in inertial space with angular velocity 12 and radial
velocity p. The tangential component p0' of vrotx contributes 212p0'
toward the rotation axis. To see the origin of this term, note that
in inertial space the instantaneous angular velocity is 0 = 0' + 12
and the centripetal acceleration term in ain is

P02 = p(0' + 12)2

= pd'2 + 212p0' + P122.

The three terms on the right correspond to the three terms on
the right of Eq. (8.8). p0'2 is part of arot, 212p0' follows from
2a x vrot as we have shown, and p!22 comes from d x (^ X r).

The Apparent Force in a Rotating Coordinate System

From Eq. (8.8) we have

arot = ain - 2 a x vrot - Q X (^ X r).

The force observed in the rotating system is

Frot = raarot = main - ra[2a x vrot + a X ( a x r)]

= F + Fficti

where the fictitious force is

Ffict = - 2 r a a X vrot - m^ X(^ X r).
The first term on the right is called the Coriolis force, and the

second term, which points outward from the rotation axis, is called
the centrifugal force.

The Coriolis and centrifugal forces are nonphysical; they arise
from kinematics and are not due to physical interactions. For
instance, the centrifugal force actually increases with p, whereas
real forces always decrease with distance. Nevertheless, the
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Coriolis and centrifugal forces seem quite real to an observer in
a rotating frame. When we drive a qar too fast around a curve,
it skids outward as if pushed by the centrifugal force. From the
standpoint of an observer in an inertial frame, however, what has
happened is that the sideward force exerted by the road on the
tires is not adequate to keep the car turning with the road.

There is a natural human tendency to describe rotational motion
with a rotating system. For instance, if we whirl a rock on a
string, we instinctively say that centrifugal force is pulling the rock
outward. In a coordinate system rotating with the rock, this is
correct; the rock is stationary and the centrifugal force is in
balance with the tension in the string. In an inertial system
there is no centrifugal force; the rock is accelerating radially due
to the force exerted by the string. Either system is valid for
analyzing the problem. However, it is essential not to confuse
the systems by trying to use fictitious forces in inertial frames.

Here are some examples to illustrate the use of rotating
coordinates.

Example 8.6 Surface of a Rotating Liquid

A bucket of water spins with angular speed a>. What shape does the
water's surface assume?

In a coordinate system rotating with the bucket, the problem is purely
static. Consider the force on a small volume of water of mass m at the
surface of the liquid. For equilibrium, the total force on m must be
zero. The forces are the contact force FOf the weight W, and the ficti-
tious force Ffictf which is radial.

Fo COS 0 — W = 0

- F o s i n <f> + Fiict = 0,

where F{ict = ra£22r = mcoV, since 12 = co fora coordinate system rotating
with the bucket.

ft
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z i

Solving these equations for <f> yields

coV
<f> = arctan

g

Unlike solids, liquids cannot exert a static force tangential to the sur-
face. Hence FOf the force on m due to the neighboring liquid, must
be perpendicular to the surface. The slope of the surface at any point
is therefore

dz
— = tan <f>

dr

_ coV

9

We can integrate this relation to find the equation of the surface z = /(r).
We have

= — I rdr
9

2 9
r2,

where we have taken z = 0 on the axis at the surface of the liquid. The
surface is a paraboloid of revolution.

Example 8.7 The Coriolis Force

O

A bead slides without friction on a rigid wire rotating at constant angular
speed o). The problem is to find the force exerted by the wire on the
bead.

In a coordinate system rotating with the wire the motion is purely
radial. The sketch shows the force diagram in the rotating system.
Fcent is the centrifugal force and FGor is the Coriolis force. Since the
wire is frictionless, the contact force N is normal to the wire. (We neglect
gravity.) In the rotating system the equations of motion are

/''cent = »»f

AT - FCot = 0.

Using Fcent = moj2r, the first equation gives

mr — mu2r = 0,

which has the solution

r = Ae?1 + Be~ut,

where A and B are constants depending on the initial conditions.
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The tangential equation of motion, which expresses the fact that there
is no tangential acceleration in the rotating system, gives

- Be~ut).

To complete the problem, we must be given the initial conditions which
specify A and B.

West

Example 8.8 Deflection of a Falling Mass

Because of the Coriolis force, falling objects on the earth are deflected
horizontally. For instance, a mass dropped from a tower lands to the
east of a plumb line from the release point. In this example we shall
calculate the deflection for a mass m dropped from a tower of height h
at the equator.

In the coordinate system r, 6 fixed to the earth (with the tangential
direction toward the east) the apparent force on m is

F = -mgr - 2mQ X vrot - mil X (O X r).

The gravitational and centrifugal forces are radial, and if m is dropped
from rest, the Coriolis force is in the equatorial plane. Thus the motion
of m is confined to the equatorial plane, and we have

vrot = rr + r06.

Using ii X vrot = Qr§ - rfl0f, and Q X (Q X r) = -tfrr, we obtain

Fr= -mg + 2mQ,6r + mftV,

Fe = -2mrft.

The radial equation of motion is

mr - mrd2 = -mg + Imttdr + mOV.

To an excellent approximation, m falls vertically and 0<<C11 We can
therefore omit the terms mrd2 and Imtidr in comparison with mfflr.
Thus

r = - 0 + Q*r. 1

The tangential equation of motion is

mrS + 2mfB = —imrQ,.

To the same approximation 0<<C ft we have

rS = -2rft. 2
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During the fall, r changes only slightly, from Re -\- h to Re, where Re is
the radius of the earth., and we can take g to be constant and r ~ Re.
Equation (1) becomes

f = -g + WRe

= -9',

where gf = g — iVRe is the acceleration due to the gravitational force
minus a centrifugal term, g1 is the apparent acceleration due to gravity,
and since this is customarily denoted by g, we shall henceforth drop the
prime. The solution of the radial equation of motion r = —g is

r = -gt

T = r0 — igt2. 3

If we insert f =
have

r& = 2gtQ

—gt in the tangential equation of motion, Eq. (2), we

or

where we have used r ^ Re. Hence

Re

and

3 Re

The horizontal deflection of m is ?/ ~ i?e0 or

The time T to fall distance h is given by

r — 7*0 = — h

so that

T = yjj and » = 3»

For a tower 50 m high,

y « 0.77 cm.

fi is positive, and the deflection is toward the east.
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ft

Example 8.9 Motion on the Rotating Earth

A surprising effect of the Coriolis force is that it turns straight line motion
on a rotating sphere into circular motion. As we shall show in this exam-
ple, for a velocity v tangential to the sphere (like the velocity of a wind
over the earth's surface) the horizontal component of the Coriolis force
is perpendicular to v and its magnitude is independent of the direction
of v.

Consider a particle of mass m moving with velocity v at latitude X on
the surface of a sphere. The sphere is rotating with angular velocity
12. If we decompose 12 into a vertical part 12F and a horizontal part
12//, the Coriolis force is

F = -2ra l2 X v

= -2m(12 F X v + 127/ X v).

12// and v are horizontal, so that 12// X v is vertical. Thus the horizontal
Coriolis force, FH, arises solely from the term 12F X v. 12F is perpen-
dicular to v and 12F X v has magnitude vtiv, independent of the direction
of v, as we wished to prove.

We can write the result in a more explicit form. If r is a unit vector
perpendicular to the surface at latitude X, 12F = 12 sin Xf and

?H = —2mS2sin X f X v.

The magnitude of FH is

FH = imvQ, sin X.

F// is always perpendicular to v, and in the absence of other horizontal
forces it would produce circular motion, clockwise in the northern hemi-
sphere and counterclockwise in the southern. Air flow on the earth is
strongly influenced by the Coriolis force and without it stable circular
weather patterns could not form. However, to understand the dynamics
of weather systems* we must also include other forces, as the next exam-
ple discusses.

Example 8.10 Weather Systems

Imagine that a region of low pressure occurs in the atmosphere, perhaps
because of differential heating of the air. The closed curves in the sketch
represent lines of constant pressure, or isobars. There is a force on
each element of air due to the pressure gradient, and in the absence of
other forces winds would blow inward, quickly equalizing the pressure
difference.

However, the wind pattern is markedly altered by the Coriolis force.
As the air begins to flow inward, it is deflected sideways by the Coriolis
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force, as shown in figure a. (The drawing is for the northern hemisphere.)
The result is that the wind circulates counterclockwise about the low along
the isobars, as in the sketch at left. Similarly, wind circulates clockwise
about regions of high pressure in the southern hemisphere. Since the
Coriolis force is essentially zero near the equator, circular weather
systems cannot form there and the weather tends to be uniform.

(a)

In order to analyze the motion, consider the forces on a parcel of air
which is rotating about a low. The pressure force on the face along
the isobar Px is PiS, where S is the area of the inner face, as shown in
the sketch. The force on the outer face is (Pi + AP)S, and the net
pressure force is (AP)S inward. The Coriolis force is imvQ, sin X, where
m is the mass of the parcel and v its velocity. The air is rotating counter-
clockwise about the low, so that the Coriolis force is outward. Hence,
the radial equation of motion for steady circular flow is

= (AP)S -

The volume of the parcel is Ar S, where Ar is the distance between the
isobars, and the mass is w Ar S, where w is the density of air, assumed
constant. Inserting this in the equation of motion and taking the limit
Ar —• 0 yields

v2 1 dP „ _
— = 2v9, sin X. 1
r w dr

Air masses do not rotate as rigid bodies. Near the center of the low,
where the pressure gradient dP /dr is large, wind velocities are highest.
Far from the center, v2/r is small and can be neglected. Equation (1)
predicts that far from the center the wind speed is

v =
1 idP 2

212 sin X w dr

The density of air at sea level is 1.3 kg/m3 and atmospheric pressure is
Pat = 105 N/m2. dP/dr can be estimated by looking at a weather map.
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Far from a high or low, a typical gradient is 3 millibars over 100 km ^
3 X 10~3 N/m3, and at latitude 45° Eq. (2) gives

v = 22 m/s

= 50 mi/h.

Near the ground this speed is reduced by friction with the land, but at
higher altitudes Eq. (2) can be applied with good accuracy.

A hurricane is an intense compact low in which the pressure gradient
can be as high as 30 X 10~3 N/m3. Hurricane winds are so strong that
the v2/r term in Eq. (1) cannot be neglected. Solving Eq. (1) for v we
find

- ^

r dP
IsinX)2 H rflsin X.

At a distance 100 km from the eye of a hurricane at latitude 20°, Eq. (3)
predicts a wind speed of 45 m/s ~ 100 mi/h for a pressure gradient of
30 X 10~3 N/m3. This is in reasonable agreement with weather observa-
tions. At larger radii, the wind speed drops because of a decrease in
the pressure gradient.

There is an interesting difference between lows and highs. In a low,
the pressure force is inward and the Coriolis force is outward, whereas
in a high, the directions of the forces are reversed. The radial equation

\ v
v ^v^Low }fp\ \ of motion for air circulating around a high is

/ .' „* i

dr ~~

dP

Solving Eq. (4) for v yields

v = rQ sin X - A/(rl2 sin X)2 - -

We see from Eq. (5) that if l/w\dP/dr\ > r(Osin X)2, the high cannot
form; the Coriolis force is too weak to supply the needed centripetal
acceleration against the large outward pressure force. For this reason,
storms like hurricanes are always low pressure systems; the strong inward
pressure force helps hold a low together.

The Foucault pendulum provides one of the most dramatic

demonstrations that the earth is a noninertial system. The pen-

dulum is simply a heavy bob hanging from a long wire mounted

to swing freely in any direction. As the pendulum swings back

and forth, the plane of motion precesses slowly about the vertical,

taking about a day and a half for a complete rotation in the mid-

latitudes. The precession is a result of the earth's rotation.
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The plane of motion tends to stay fixed in inertial space while the
earth rotates beneath it.

In the 1850s Foucault hung a pendulum 67 m long from the
dome of the Pantheon in Paris. The bob precessed almost a
centimeter on each swing, and it presented the first direct evi-
dence that the earth is indeed rotating. The pendulum became
the rage of Paris.

The next example uses our analysis of the Coriolis force to
calculate the motion of the Foucault pendulum in a simple way.

Example 8.11 The Foucault Pendulum

Consider a pendulum of mass m which is swinging with frequency y =
y/g/l, where I is the length of the pendulum. If we describe the posi-
tion of the pendulum's bob in the horizontal plane by coordinates r, 0,
then

r = r0 sin yt,

where r0 is the amplitude of the motion. In the absence of the Coriolis
force, there are no tangential forces and 6 is constant.

The horizontal Coriolis force FCH is

F C H = — 2ml2 s in Xr8.

Hence, the tangential equation of motion, mae = FCR, becomes

m<jd + 2rd) = -2ml2 sin X f

or
rS + 2r6 = -212 sin Xr.

The simplest solution to this equation is found by taking 6 = constant.
In this case the term rd vanishes, and we have

6 = -12 sin X.

The pendulum precesses uniformly in a clockwise direction. The time
for the plane of oscillation to rotate once is

12 sin X

24 h

sin X

Thus, at a latitude of 45°, the Foucault pendulum rotates once in 34 h.
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At the North Pole the period of precession is 24 h; the pendulum rotates
clockwise with respect to the earth at the same rate as the earth rotates
counterclockwise. With respect to inertial space the plane of motion
remains fixed.

In addition to its dramatic display of the earth's rotation, the
Foucault pendulum embodies a profound mystery. Consider, for
instance, a Foucault pendulum at the North Pole. The precession
is obviously an artifact; the plane of motion stays fixed while the
earth rotates beneath it. The plane of the pendulum remains
fixed relative to the fixed stars. Why should this be? How does
the pendulum "know" that it must swing in a plane which is sta-
tionary relative to the fixed stars instead of, say, in a plane which
rotates at some uniform rate?

This question puzzled Newton, who described it in terms of the
following experiment: if a bucket contains water at rest, the sur-
face of the water is flat. If the bucket is set spinning at a steady
rate, the water at first lags behind, but gradually, as the water's
rotational speed increases, the surface takes on the form of the
parabola of revolution discussed in Example 8.6. If the bucket is
suddenly stopped, the concavity of the water's surface persists
for some time. It is evidently not motion relative to the bucket
that is important in determining the shape of the liquid surface.
So long as the water rotates, the surface is depressed. Newton
concluded that rotational motion is absolute, since by observing
the water's surface it is possible to detect rotation without refer-
ence to outside objects.

From one point of view there is really no paradox to the absolute
nature of rotational motion. The principle of galilean invariance
asserts that there is no way to detect locally the uniform transla-
tional motion of a system. However, this does not limit our ability
to detect the acceleration of a system. A rotating system accel-
erates in a most nonuniform way. At every point the accelera-
tion is directed toward the axis of rotation; the acceleration points
out the axis. Our ability to detect such an acceleration in no way
contradicts galilean invariance.

Nevertheless, there is an engima. Both the rotating bucket
and the Foucault pendulum maintain their motion relative to the
fixed stars. How do the fixed stars determine an inertial system?
What prevents the plane of the pendulum from rotating with
respect to the fixed stars? Why is the surface of the water in
the rotating bucket flat only when the bucket is at rest with respect
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to the fixed stars? Ernst Mach, who in 1883 wrote the first Incisive
critique of newtonian physics, put the matter this way. Suppose
that we keep a bucket of water fixed and rotate all the stars.
Physically there is no way to distinguish this from the original
case where the bucket is rotated, and we expect the surface of
the water to again assume a parabolic shape. Apparently the
motion of the water in the bucket depends on the motion of matter
far off in the universe. To put it more dramatically, suppose that
we eliminate the stars, one by one, until only our bucket remains.
What will happen now if we rotate the bucket? There is no way
for us to predict the motion of the water in the bucket—the
inertial properties of space might be totally different. We have
a most peculiar situation. The local properties of space depend
on far-off matter, yet when we rotate the water, the surface
immediately starts to deflect. There is no time for signals to
travel to the distant stars and return. How does the water in
the bucket "know" what the rest of the universe is doing?

The principle that the inertial properties of space depend on
the existence of far-off matter is known as Mach's principle.
The principle is accepted by many physicists, but it can lead to
strange conclusions. For instance, there is no reason to believe
that matter in the universe is uniformly distributed around the
earth; the solar system is located well out in the limb of our galaxy,
and matter in our galaxy is concentrated predominantly in a very
thin plane. If inertia is due to far-off matter, then we might well
expect it to be different in different directions so that the value
of mass would depend on the direction of acceleration. No such
effects have ever been observed. Inertia remains a mystery.

(<0 A

Note 8.1 The Equivalence Principle and the Gravitational Red Shift

Radiating atoms emit light at only certain characteristic wavelengths.
If light from atoms in the strong gravitational field of dense stars is
analyzed spectroscopically, the characteristic wavelengths are observed
to be slightly increased, shifted toward the red. We can visualize atoms
as clocks which "tick" at characteristic frequencies. The shift toward
longer wavelengths, known as the gravitational red shift, corresponds
to a slowing of the clocks. The gravitational red shift implies that clocks
in a gravitational field appear to run slow when viewed from outside the
field. As we shall show, the origin of the effect lies in the nature of space,
time, and gravity, not in the trivial effect of gravity on mechanical
clocks.
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(b)

(c)

L +vt

= vt

(d)

It is rather startling to see how the equivalence principle, which is so
simple and nonmathematical, leads directly to a connection between
space, time, and gravity. To show the connection we must use an ele-
mentary result from the theory of relativity; it is impossible to transmit
information faster than the velocity of light, c = 3 X 108 m/s. However,
this is the only relativistic idea needed; aside from this, our argument is
completely classical.

Consider two scientists, A and B, separated by distance L as shown
in sketch (a). A has a clock and a light which he flashes at intervals
separated by time T A- The signals are received by B, who notes the
interval between pulses, TB, with his own clock. A plot of vertical dis-
tance versus time is shown for two light pulses in (b). The pulses are
delayed by the transit time, L/c, but the interval TB is the same as TA.
Hence, if A transmits the pulses at, say, 1-s intervals, so that TA = 1 s,
then Z?'s clock will read 1 s between the arrival of successive pulses.

Now consider the situation if both observers move upward uniformly
with speed v, as shown in sketch (c). Although both scientists move
during the time interval, they move equally, and we still have TB = T A-

The situation is entirely different if both observers are accelerating
upward at uniform rate a as shown in sketch (d). A and B start from
rest, and the graph of distance versus time is a parabola. Since A and
B have the same acceleration, the curves are parallel, separated by dis-
tance L at each instant. It is apparent from the sketch that TB > TA,
since the second pulse travels farther than the first and has a longer
transit time. The effect is purely kinematical.

Now, by the principle of equivalence, A and B cannot distinguish
between their upward accelerating system and a system at rest in a
downward gravitational field with magnitude g = a. Thus, if the experi-
ment is repeated in a system at rest in a gravitational field, the equiva-
lence principle requires that TB > TA, as before. If TA = 1 s, B will
observe an interval greater,than 1 s between successive pulses. B will
conclude that A's clock is running slow. This is the origin of the gravita-
tional red shift.

By applying the argument quantitatively, the following approximate
result is readily obtained:

AT

T
TB - TA gL

where it is assumed that A 7 7 / 7 1 « 1.
On earth the gravitational red shift is AT/T = 10"16 L, where L is in

meters. In spite of its small size, the effect has been measured and
confirmed to an accuracy of 1 percent. The experiment was done by
Pound, Rebka, and Snyder at Harvard University. The "clock" was the
frequency of a gamma ray, and by using a technique known as Mossbauer
absorption they were able to measure accurately the gravitational red
shift due to a vertical displacement of 25 m.
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Note 8.2 Rotating Coordinate Transformation

In this note we present an analytical derivation of Eq. (8.7) relating the
time derivative of any vector B as observed in a rotating coordinate sys-
tem to the time derivative observed in an inertial system. If the system
x'f y', z' rotates at rate & with respect to the inertial system x, y, z, we
shall prove that the time derivatives in the two systems of any vector B
are related by

\
\

\

dt dt
— = ( — I + ^ X B. 1

Consider an inertial coordinate system x, y, z and a coordinate system
x', y', z1 which rotates with respect to the inertial system at angular
velocity Q. The origins coincide. We can describe an arbitrary vector
B by components along base vectors of either coordinate system. Thus,
we have

B = Bz\ + By] + BM 2

or, alternatively,

B = Bf
xV + ByY + B'zk', 3

where f, j , k are the base vectors along the inertial axes and !', j ' , k' are
the base vectors along the rotating axes.

We now find an expression for the time derivative of B in each coor-
dinate system. By differentiating Eq. (2) we have

/dB\ _ d_

\di) " dt
(BJ + By] +

The x, y, z system is inertial so that i, j , and k are fixed in space. We
have

dB = dBf dBy dB, 4

dt dt dt dt

which is the familiar expression for the time derivative of a vector in
cartesian coordinates. We designate this expression by (dB/dt)in.

If we differentiate Eq. (3) we obtain

The first term is the time derivative of B with respect to the x'y'z'
axes; this is the rate of change of B which would be measured by an
observer in the rotating system, (dB/dt\ot. To evaluate the second
term, note that since I' is a unit vector, it can change only in direction,
not in magnitude; thus t' undergoes pure rotation. In Sec. 7.2 we found
that the time derivative of a vector r of constant magnitude rotating with
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angular velocity o> is dr/dt = o> X r. We can use this result to evaluate
dV /dt. Let r lie along the x' axis and have unit magnitude: r = i'. Hence

-oxr.
dt

Similarly,
— = a X r and - = i i X k'.
dt dt

The second term in Eq. (5) becomes

B'x(& X!') + B'V(Q X i') + £*(^ x k ' ) = O X (B'XY

= ax B.
Equation (5) becomes

(fl •(?)... ™
which is the desired result.

Since B is an arbitrary vector, this result is quite general; it can be
applied to any vector we choose. It is important to be clear on the
meaning of Eq. (6). The vector B itself is the same in both the inertial
and the rotating coordinate systems. (For this reason there is no sub-
script to B in the term Q X B.) It is only the time derivative of B which
depends on the coordinate system. For instance, a vector which is con-
stant in one system will change with time in the other.

Problems 8.1 A uniform thin rod of length L and mass M is pivoted at one end.
The pivot is attached to the top of a car accelerating at rate A, as shown.

a. What is the equilibrium value of the angle 6 between the rod and
the top of the car?

b. Suppose that the rod is displaced a small angle <j> from equilibrium.
What is its motion for small <f>?

8.2 A truck at rest has one door fully open, as shown. The truck accel-
erates forward at constant rate A, and the door begins to swing shut.
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The door is uniform and solid, has total mass M, height h, and width w.
Neglect air resistance.

a. Find the instantaneous angular velocity of the door about its hinges
when it has swung through 90°.

b. Find the horizontal force on the door when it has swung through
90°.

/ w

8.3 A pendulum is at rest with its bob pointing toward the center of
the earth. The support of the pendulum is moved horizontally with
uniform acceleration a, and the pendulum starts to swing. Neglect
rotation of the earth. Consider the motion of the pendulum as the
pivot moves over a small distance d subtending an angle 0O ~ d/Re<& 1
at the center of the earth. Show that if the period of the pendulum is
2TT 'VRe/g, the pendulum will continue to point toward the center of the
earth, if effects of order 0O

2 and higher are neglected.

8.4 The center of mass of a 3,200-lb car is midway between the wheels
and 2 ft above the ground. The wheels are 8 ft apart.

a. What is the minimum acceleration A of the car so that the front
wheels just begin to lift off the ground?

b. If the car decelerates at rate g, what is the normal force on the
front wheels and on the rear wheels?

8.5 Many applications for gyroscopes have been found in navigational
systems. For instance, gyroscopes can be used to measure accelera-
tion. Consider a gyroscope spinning at high speed cos. The gyroscope
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is attached to a vehicle by a universal pivot P. If the vehicle accelerates
in the direction perpendicular to the spin axis at rate a, then the gyro-
scope will precess about the acceleration axis, as shown in the sketch.
The total angle of precession, 0, is measured. Show that if the system
starts from rest, the final velocity of the vehicle is given by

v = 6,
Ml

where Iscos is the gyroscope's spin angular momentum, M is the total
mass of the pivoted portion of the gyroscope, and / is the distance from
the pivot to the center of mass. (Such a system is called an integrating
gyro, since it automatically integrates the acceleration to give the velocity.)

Acceleration

8.6 A top of mass M spins with angular speed us about its axis, as shown.
The moment of inertia of the top about the spin axis is Io, and the center
of mass of the top is a distance I from the point. The axis is inclined at
angle <f> with respect to the vertical, and the top is undergoing uniform
precession. Gravity is directed downward. The top is in an elevator,
with its tip held to the elevator floor by a frictionless pivot. Find the
rate of precession, 12, clearly indicating its direction, in each of the follow-
ing cases:

a. The elevator at rest

b. The elevator accelerating down at rate 2g
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8.7 Find the difference in the apparent force of gravity at the equator
and the poles, assuming that the earth is spherical.

8.8 Derive the familiar expression for velocity in plane polar coordinates,
v = rr + r#6, by examining the motion of a particle in a rotating coor-
dinate system in which the velocity is instantaneously radial.

8.9 A 400-ton train runs south at a speed of 60 mi/h at a latitude of 60°
north.

a. What is the horizontal force on the tracks?

b. What is the direction of the force?
Ans. (a) Approximately 300 Ib

8.10 The acceleration due to gravity measured in an earthbound coor-
dinate system is denoted by g. However, because of the earth's rota-
tion, g differs from the true acceleration due to gravity, g0. Assuming
that the earth is perfectly round, with radius Re and angular velocity toet

find g as a function of latitude X. (Assuming the earth to be round is
actually not justified—the contributions to the variation of g with latitude
due to the polar flattening is comparable to the effect calculated here.)

Ans. g = 0O[1 - (2z - x2) cos2 X]*, where x = # A 7 0 o

8.11 A high speed hydrofoil races across the ocean at the equator at a
speed of 200 mi/h. Let the acceleration of gravity for an observer at
rest on the earth be g. Find the fractional change in gravity, Ag/g,
measured by a passenger on the hydrofoil when the hydrofoil heads in
the following directions:

a. East

b. West

c. South

d. North

8.12 A pendulum is rigidly fixed to an axle held by two supports so that
it can swing only in a plane perpendicular to the axle. The pendulum
consists of a mass M attached to a massless rod of length I. The sup-
ports are mounted on a platform which rotates with constant angular
velocity fi. Find the pendulum's frequency assuming that the amplitude
is small.
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9.1 Introduction

It was Newton's fascination with planetary motion that led him
to formulate his laws of motion and the law of universal gravita-
tion. His success in explaining Kepler's empirical laws of plane-
tary motion was an overwhelming argument in favor of the new
mechanics and marked the beginning of modern mathematical
physics. Planetary motion and the more general problem of
motion under a central force continue to play an important role
in most branches of physics and turn up in such topics as particle
scattering, atomic structure, and space navigation.

In this chapter we apply newtonian physics to the general prob-
lem of central force motion. We shall start by looking at some of
the general features of a system of two particles interacting with
a central force f(r)f, where /(r) is any function of the distance r
between the particles and r is a unit vector along the line of cen-
ters. After making a simple change of coordinates, we shall show
how to find a complete solution by using the conservation laws of
angular momentum and energy. Finally, we shall apply these
results to the case of planetary motion, /(r) oc l/r2, and show how
they predict Kepler's empirical laws.

tx-T2

9.2 Central Force Motion as a One Body Problem

Consider an isolated system consisting of two particles interacting
under a central force /(r). The masses of the particles are mi
and m2 and their position vectors are rx and r2. We have

r = rx — r2
r = |r| 9.1

= k i - r2|.

The equations of motion are

9.2a

. . . :- 9.26

The force is attractive for /(r) < 0 and repulsive for f(r) > 0.
Equations (9.2a and b) are coupled together by r; the behavior of
rx and r2 depends on r = rx — r2. We shall show that the prob-
lem is easier to handle if we replace ri and r2 by r = rx — r2 and
the center of mass vector R = (miri + m2r2)/(mi + m2). The
equation of motion for R is trivial since there are no external forces.
The equation for r turns out to be like the equation of motion of a
single particle and has a straightforward solution.
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The equation of motion for R is

R = 0,

which has the simple solution

R = Ro + V*. 9.3

The constant vectors Ro and V depend on the choice of coordinate
system and the initial conditions. If we are clever enough to
take the origin at the center of mass, Ro = 0 and V = 0.

To find the equation of motion for r we divide Eq. (9.2a) by mi
and Eq. (9.26) by ra2 and subtract. This gives

f(r)r
Wi ra2/

or

i + m 2 /

Denoting mim2/(mi +
?i — r2 = r, we have

by /*» the reduced mass, and using

9.4

Equation (9.4) is identical to the equation of motion for a par-
ticle of mass \x acted on by a force /(r)r; no trace of the two par-
tide problem remains. The two particle problem has been trans-
formed to a one particle problem. (Unfortunately, the method
cannot be generalized. There is no way to reduce the equations
of motion for three or more particles to equivalent one body equa-
tions, and for this reason the exact solution of the three body
problem is unknown.)

The problem now is to find r as a function of time from Eq.
(9.4). Once we know r, we can easily find rx and r2 by using the
relations

r = rx - r2

m2r2

Solving for rx and r2 gives

9.5a

9.56

9.6a

9.66
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Center of mass
m2r/(mi + ra2) and — mir/(rai + m2) are the position vectors of
nti and m2 relative to the center of mass, as the sketch shows.

The complete solution of n'r = f(r) r depends on the particular
form of /(r). However, a number of the properties of central
force motion hold true in general regardless of the form of /(r),
and we turn next to investigate these.

9.3 General Properties of Central Force Motion

The equation /x'r = f(r) r is a vector equation, and although only
a single particle is involved, there are three components to be
considered. In this section we shall see how to use the conserva-
tion laws to find some general properties of the solution and to
reduce the equation to an equation in a single scalar variable.

fLr)r

The Motion Is Confined to a Plane

The central force /(r) r is along r and can exert no torque on the
reduced mass /x. Hence, the angular momentum L of ^ is con-
stant. It is easy to show that this implies that the motion of p
is confined to a plane. Since L = r x MV, where v = f, r is always
perpendicular to L by the properties of the cross product. How-
ever, L is fixed in space, and it follows that r can only move in the
plane perpendicular to L through the origin.

Since the motion is confined to a plane, we can, without loss of
generality, choose our coordinate system so that the motion is
in the xy plane. Introducing polar coordinates, the equation of
motion //r = f(r) r becomes

_x n(r$ + Zr&) = 0.
9.7a

9.7&

The Energy and Angular Momentum Are Constants of the Motion

We have reduced the problem to two dimensions by using the fact
that the direction of L is constant. There are two other important
constants of central force motion: the magnitude of the angular
momentum |L| = I, and the total energy E. Using I and E, we
can solve the problem of central force motion more easily and with
greater physical insight than by working with Eqs. (9.7a and 6).

The angular momentum of \i has magnitude

I = = fJir2d. 9.8a
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The total energy of /x is

E = yv2 + U(r)

= iKr2 + rW) + U(r),

where the potential energy U(r) is given by

U(r)-U(ra)= -

9.8&

The constant U(ra) is not physically significant and so we can
leave ra unspecified; adding a constant to the energy has no effect
on the motion.

We can eliminate 6 from Eq. (9.86) by using Eq. (9.8a). The
result is

9 - 9

This looks like the equation of motion of a particle moving in one
dimension; all reference to 0 is gone. We can press the parallel
further by introducing

2 fir2
9.10

so that

E = | M r 2 + C/eff(r).
Ueff is called the effective potential energy.

9.11

Often it is referred
to simply as the effective potential. Ueft differs from the true
potential U(r) by the term Z2/2/zr2, called the centrifugal potential.

The formal solution of Eq. (9.11) is

- uets)
or

dr
= t - t0

9.12

9.13
o V(2/ME - C

Equation (9.13) gives us r as a function of t, although the integral
may have to be done numerically in some cases. To find 6 as a
function of t, we can use the solution for r in Eq. (9.8a):

de _ j _
dt ~~ Air2

Since r is known as a function of t from Eq. (9.13), it is possible
to integrate to find 6:

9.14

f* l

e - $0 = / — dt.
Jut**

9.15
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Often we are interested in the path of the particle, which means
knowing r a s a function of 0 rather than as a function of time.
We call r(0) the orbit of the particle. (The term is used even if
the trajectory does not close on itself.) Dividing Eq. (9.14) by
Eq. (9.12) gives

dd __ J 1
dr " txr2 V(2//i)(S - Ueii)

9.16

This completes the formal solution of the central force problem.
We can obtain r(t), 0(0, or r(0) as we please; all we need to do is
evaluate the appropriate integrals.

You may have noticed that we found the solution without using
the equations of motion, Eqs. (9.7a and b). Actually, we did
use them, but in a disguised form. For instance, differentiating
I = nr2d with respect to time gives 0 = fxr2d + 2rfd or

M(r0 + 2f0) = 0,

which is identical to the tangential equation of motion, Eq. (9.7&).
Similarly, differentiation of the energy equation with respect to
time gives the radial equation of motion, Eq. (9.7a).

The Law of Equal Areas

We have already shown in Example 6.3 that for any central force,
r sweeps out equal areas in equal times. This general property
of central force motion is a direct consequence of the fact that the
angular momentum is constant.

Center of mass

9.4 Finding the Motion in Real Problems

In order to apply the solution for the motion which we found in
the last section, we need to relate the position vectors of nil and
m2 to r and evaluate I and E.

From Eqs. (9.6a and b) the position vectors of m\ and m2 rela-
tive, to the center of mass are

+ m2

r, = - r.

9.17a

9.176
mi + m2

r[ and r'2 lie along r. They remain back to back in the plane of
motion. Hence, mi and ra2 move about their center of mass in
the fixed plane, separated by distance r.
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In many problems, like the motion of a planet around the sun,
the masses of the two particles are very different. If m2 ^> mi,
Eqs. (9.17a and b) become

r2 « 0.

The reduced mass /* is approximately mi, and the center of mass
lies at m2. In this case the more massive particle is essentially
fixed at the origin, and there is no important difference between
the actual two particle problem and the equivalent one particle
problem.

In the one particle problem the angular momentum is

L = txr X v.

It is easy to show that L is simply the angular momentum of mx

and m2 about the center of mass, Lc.

Lc = miri x v'x + m2r2 X v2f

where v'x = f[ and v2 = r2. Using Eqs. (9.17a and b) we have

mim2 . mim2 .
Lc = r x v r x v2

mi + m2 mi + m2

= Mr X (v'i - v2)

= / i r xv

= L.
Similarly, the total energy E is the energy of mi and m2 relative

to their center of mass, Ec.
Ec = W v i • V'I) + Im2(v2 • v2) + C/(r).
From Eqs. (9.17a and b), we have m X = /*v and m2v2 = — juv.
Hence,

Ec = iMv • (vi - v2) + U(r)
= IM(V • v) + U(r)
= E.

9.5 The Energy Equation and Energy Diagrams

In Sec. 9.3 we found two equivalent ways of writing E, the total
energy in the center of mass system. According to Eq. (9.86),

E = inv* + U(r),

and according to Eq. (9.11),

E = iMr2 + C/effW.
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We generally need to use both these forms in analyzing central
force motion. The first form, ifiv2 + U(r), is handy for evaluating
E; all we need to know is the relative speed and position at some
instant. However, v2 = r2 + (r0)2, and this dependence on two
coordinates, r and 0, makes it difficult to visualize the motion.
In contrast, the second form, i^r2 + Ueu(r) depends on the single
coordinate r. In fact, it is identical to the equation for the energy
of a particle of mass n constrained to move along a straight line
with kinetic energy }nr2 and potential energy Uen(r). The coor-
dinate 0 is completely suppressed—the kinetic energy associated
with the tangential motion, ifji(rd)2, is accounted for in the effective
potential by the relations

+
The equation

E = ^f2 + Ueii(r)

involves only the radial motion. Consequently, we can use the
energy diagram technique developed in Chap. 4 to find the
qualitative features of the radial motion.

To see how the method works, let's start by looking at a very
simple system, two noninteracting particles.

Example 9.1 Noninteracting Particles

m2 v2 Two noninteracting particles nil and fn2 move toward each other with
velocities vx and v2. Their paths are offset by distance b, as shown in
the sketch. Let us investigate the equivalent one body description of
this system.

The relative velocity is

v0 = r
= ri - r2

= Vi - V2.

v0 is constant since Vi and v2 are constant. The energy of the system
relative to the center of mass is

E = i/zfo2 + U(r) =

since C7(r) = 0 for noninteracting particles.
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In order to draw the energy diagram we need to find the effective
potential

I2 I2

2/xr2 2/xr2

We could evaluate I by direct computation, but it is simpler to use the
relation

72

E = iu
2jur2

When mi and mi pass each other, r — b and r = 0. Hence

and

The energy diagram is shown in the sketch. The kinetic energy asso-
ciated with radial motion is

K = i/xr2

= E - Ue{{.

K is never negative so that the motion is restricted to regions where
E — Ueft > 0. Initially r is very large. As the particles approach, the
kinetic energy decreases, vanishing at the turning point rt, where the
radial velocity is zero and the motion is purely tangential. At the turn-
ing point E = Ue{{(rt), which gives

rt = 6

as we expect, since rt is the distance of closest approach of the particles.
Once the turning point is passed, r increases and the particles separate.
In our one dimensional picture, the particle ix "bounces off" the barrier
of the effective potential.

Now let us apply energy diagrams to the meatier problem of
planetary motion. For the attractive gravitational force,

/(r) = -
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(By the usual convention, we take £/(«>) == 0.) The effective
potential energy is

i _
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Case 2:

Case 3:

Case 4: E = E
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Case 1: E > 0
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E<0

^^f^~-~~^^
m i n 400>^

If I 7^ 0, the repulsive centrifugal potential Z2/(2jur2) dominates at
small r, whereas the attractive gravitational potential —Gm1m2/r
dominates at large r. The drawing shows the energy diagram with
various values of the total energy. The kinetic energy of radial
motion is K = E — UeH, and the motion is restricted to regions
where K > 0. The nature of the motion is determined by the
total energy. Here are the various possibilities:

1. E > 0: r is unbounded for large values but must exceed a
certain minimum if I 5* 0. The particles are kept apart by the
"centrifugal barrier."

2. E = 0: This is qualitatively similar to case 1 but on the boundary
between unbounded and bounded motion.

3. E < 0: The motion is bounded for both large and small r. The
two particles form a bound system.



SEC. 9.5 THE ENERGY EQUATION AND ENERGY DIAGRAMS 387

4. E = Emin: r is restricted to one value,
constant distance from one another.

The particles stay a

In the next section we shall find that case 1 corresponds to motion
in a hyperbola; case 2, to a parabola; case 3, to an ellipse; and
case 4, to a circle.

There is one other possibility, 1 = 0. In this case the particles
move along a straight line on a collision course, since when I is
zero there is no centrifugal barrier to hold them apart.

Example 9.2 The Capture of Comets

Suppose that a comet with E > 0 drifts into the solar system. From
our discussion of the energy diagram for motion under a gravitational
force, the comet will approach the sun and then swing away, never to
return. In order for the comet to become a member of the solar sys-
tem, its energy would have to be reduced to a negative value. However,
the gravitational force is conservative and the comet's total energy cannot
change.

The situation is quite different if more than two bodies are involved.
For instance, if the comet is deflected by a massive planet like Jupiter,
it can transfer energy to the planet and so become trapped in the solar
system.

Suppose that a comet is heading outward from the sun toward the
orbit of Jupiter, as shown in the sketch. Let the velocity of the comet
before it starts to interact appreciably with Jupiter be vt, and let Jupiter's
velocity be V. For simplicity we shall assume that the orbits are not
appreciably deflected by the sun during the time of interaction.

In the comet-Jupiter center of mass system Jupiter is essentially at
rest, and the center of mass velocity of the comet is vlc = vt — V, as
shown in figure a.

- V

In the center of mass system the path of the comet is deflected, but
the final speed is equal to the initial speed vic. Hence, the interaction
merely rotates vic through some angle 0 to a new direction v/c, as shown
in Fig. b. The final velocity in the space fixed system is

v, = v/c + V.
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Figure c shows v/ and, for comparison, v*. For the deflection shown,
v/ < Vi, and the comet's energy has decreased. Conversely, if the deflec-
tion is in the opposite direction, interaction with Jupiter would increase
the energy, possibly freeing a bound comet from the solar system. A
large proportion of known comets have energies close to zero, so close
that it is often difficult to determine from observations whether the orbit
is elliptic (E < 0) or hyperbolic (E > 0). The interaction of a comet
with Jupiter is therefore often sufficient to change the orbit from unbound
to bound, or vice versa.

This mechanism for picking up energy from a planet can be used to
accelerate an interplanetary spacecraft. By picking the orbit cleverly,
the spacecraft can "hop" from planet to planet with a great saving in
fuel.

The process we have described may seem to contradict the idea that
the gravitational force is strictly conservative. Only gravity acts on the
comet and yet its total energy can change. The reason is that the
comet experiences a time-dependent gravitational force, and time-
dependent forces are intrinsically nonconservative. Nevertheless, the
total energy of the entire system is conserved, as we expect.

Example 9.3 Perturbed Circular Orbit

A satellite of mass m orbits the earth in a circle of radius ro. One of its
engines is fired briefly toward the center of the earth, changing the
energy of the satellite but not its angular momentum. The problem is
to find the new orbit.

The energy diagram shows the initial energy Ei and the final energy
r° r Ef. Note that firing the engine radially does not change the effective

potential because I is not altered. Since the earth's mass Me is much
greater than m, the reduced mass is nearly m and the earth is effectively
fixed.

If Ef is not much greater than Ei, the energy diagram shows that r
never differs much from ro. Rather than solve the planetary motion
problem exactly, as we shall do in the next section, we instead approxi-
mate Ueu(r) in the neighborhood of r0 by a parabolic potential. As we
know from our analysis of small oscillations of a particle about equilib-
rium, Sec. 4.10, the resulting radial motion of the satellite will be simple
harmonic motion about r0 to good accuracy.

The effective potential is, with C = GmMe,
n 72

+
r 2mr2

The minimum of £/eff is at r = r0. Since the slope is zero there, we have

dr
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which gives

I = \/mCr0. 1

(This result can also be found by applying Newton's second law to circular
motion.) As we recall from Sec. 4.10, the frequency of oscillation of the
system, which we shall denote by /3, is

where

k = d2Uefi

dr2

This is readily evaluated to yield

~C~ I

Hence, the radial position is given by

r = r0 + A sin fit. 4

We have omitted the term B cos fit in order to satisfy the initial condi-
tion r(0) = r0. Although we could calculate the amplitude A in terms
of Ef, we shall not bother with the algebra here except to note that
A <3C r0 for E/ nearly equal to E{.

To find the new orbit, we must eliminate t and express r as a function
of 6. For the circular orbit,

6 = , or 5
mr0

2

Wo2/

Equation (5) is accurate enough for our purposes, even though the radius
oscillates slightly after the engine is fired; t occurs only in a small correc-
tion term to r in Eq. (4), and we are neglecting terms of order A and
higher.

From Eqs. (1) and (5) we see that the frequency of rotation of the
satellite around the earth is

I
mr0

2

and

6 =

i

Z

mr0
2

t =

2

PL

—
\ wr0
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Surprisingly, the frequency of , station is identical to the frequency of
radial oscillation. If we substitute Eq. (7) in Eq. (4), we obtain

r = r0 + A sin 6. 8

The now orbit is shown as the solid line in the sketch. The orbit looks
almost circular, but it is no longer centered on the earth.

As we shall show in Sec. 9.6, the exact orbit for E = Ef is an ellipse
with the equation

r =
1 - O4/ro)sin 0

If A In « 1,

n
1 - (i4/ro)sin 0

= r0 + A sin 0.

To first order in A, Eq. (8) is the equation of an ellipse. However, the
exact calculation is harder to derive (and to digest) than is the approxi-
mate result we found by using the energy diagram.

9.6 Planetary Motion

Let us now solve the main problem of the chapter-
orbit for the gravitational interaction

-finding the

U(r) = - G
Mm C

— )
r

where M is the mass of the sun and m is the mass of a planet.
Alternatively, M could be the mass of a planet and m the mass of
a satellite. Before proceeding with the calculation, it might be
useful to consider whether or not this is a realistic description of
the interaction of the sun and a planet. If both bodies were
homogeneous spheres, they would interact like point particles as
we saw in Note 2.1, and our formula would be exact. However,
most of the members of the solar system are neither perfectly
homogeneous nor perfectly spherical. For example, satellites
around the moon are perturbed by mass concentrations ("mas-
cons") in the moon, and the planet Mercury may be slightly
perturbed by an equatorial bulge of the sun. Furthermore, the
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solar system is by no means a two body system. Each planet is
attracted by all the other planets as well as by the sun.

Fortunately, none of these effects is particularly large. Most
of the mass of the solar system is in the sun, so that the attrac-
tion of the planets for each other is quite feeble. The largest
interaction is between Jupiter and Saturn. The effect of this
perturbation is chiefly to change the speed of each planet, so that
the law of equal areas no longer holds exactly. However, the
perturbation never shifts Jupiter by more than a few minutes of
arc from its expected position (one minute of arc is approximately
equal to one-thirtieth the moon's diameter as seen from the earth).
In practice, one first calculates planetary orbits neglecting the
other planets and then calculates small corrections to the orbits
due to their presence. Such a procedure is called a perturba-
tion method. (The transuranic planets were actually discovered
by their small perturbing effects on the orbits of the known outer
planets.) Furthermore, if a body is not quite homogeneous or
spherically symmetric, its gravitational field can be shown to have
terms depending on 1/r3, 1/r4, etc., in addition to the main 1/r2

term. The coefficients depend on the size of the body com-
pared with r; over the span of the solar system the higher order
terms become negligible, although they may be important for a
nearby satellite.

Returning to our idealized planetary motion problem U(r) =
— C/r, we find that the equation for the orbit Eq. (9.16) becomes,
using indefinite integrals,

- 00 = I j
dr

where 0O is a constant of integration. The integral over r is listed
in tables of integrals. The result is

/ p£r -V- \
d — do = arcsin I . I

\r V^C2 + 2nEP/
or

- I2 = r Vfx2C2 + 2fiEl2 sin (0 - 0O).

Solving for r,

- Vl + (2El2/fxC2) sin (0 - 0O)
9.18
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The usual convention is to take 0O = — TT/2 and to introduce the
parameters

9.19

9.20
2E12

Physically, r0 is the radius of the circular orbit corresponding to
the given values of Z, /*, and C. The dimensionless parameter e,
called the eccentricity, characterizes the shape of the orbit, as
we shall see. With these replacements, Eq. (9.18) becomes

9.21
— € COS 0

Equation (9.21) looks more familiar in cartesian coordinates
x = r cos d,y = r sin 0. Rewriting it in the form r — er cos 0 = r0,
we have

or

(1 - €2)x2 - 2roex + y2 = r0
2.

Here are the possibilities:

9.22

1. e > 1: The coefficients of x2 and y2 are unequal and opposite
in sign; the equation has the form y2 — Ax2 — Bx = constant,
which is the equation of a hyperbola. From Eq. (9.20), e > 1
whenever E > 0.

2. e = 1: Eq. (9.22) becomes

Focus

x = £ - -°-
2r0 2

This is the equation of a parabola, e = 1 when E = 0.
3. 0 < € < 1: The coefficients of z2 and 2/2 are unequal but of the
same sign; the equation has the form y2 + Ax2 — Bx — constant,
which is the equation of an ellipse. The term linear in x means
that the geometric center of the ellipse is not at the origin of coor-
dinates. As proved in Note 9.1, one focus of the ellipse is at the
origin. For e < 1, the allowed values of E are
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When E = —nC2/2l2, e = 0 and the equation of the orbit becomes
x2 + y2 = r0

2; the ellipse degenerates to a c/rc/e.

Example 9.4 Hyperbolic Orbits

In order to use the orbit equation we must be able to express the orbit
in terms of experimentally accessible parameters. For example, if the
orbit is unbound, we might know the energy and the initial trajectory.

In this example we shall show how to relate some experimental para-
meters to the trajectory for the case of a hyperbolic orbit. The results
could apply to the motion of a comet about the sun, or to the trajectory
of a charged particle scattering off an atomic nucleus.

Let the speed of ix be v0 when /z is far from the origin, and let the initial
path pass the origin at distance b, as shown, b is commonly called the
impact parameter. The angular momentum I and energy E are

I = ixvQb

E = ifiv0
2.

For an inverse square force, U(r) = —C/r and the equation of the
orbit is

1 — € cos 6

where

I2

2Eb2

= •
C

and

When 6 = TT, r = rmin,

2Eb2/C

' min

1 + V l + (2Eb/C)2

For E —• oo, rmin —> b. Hence 0 < rmin < b.
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The angle of the asymptotes 6a can be found from the orbit equation
by letting r —• oo. We find

COS 6a

In the interaction, n is deflected through the angle \p = T — 26a. The
deflection angle \f/ approaches 180° if (2Eb/C)2 <<C 1.

Rutherford's classic experiment that established the nuclear model
of the atom showed that fast alpha particles (doubly charged helium
nuclei) interact with single atoms in thin gold foils according to the
Coulomb potential U(r) = —C'/r. He found that the alpha particles
followed hyperbolic orbits even when rmin was much less than the radius
of the atom, proving that the charge of an atom must be concentrated
in a small volume, the nucleus. Surprisingly, Rutherford was unable
to determine whether the gold nuclei attracted ( C > 0) or repelled
( C < 0) alpha particles. The eccentricity, hence the scattering angle,
depends on (2Eb/C'y, making it impossible to determine the algebraic
sign of the strength parameter C.

Elliptical orbits (E < 0, 0 < e < 1) are so important it is worth

looking at their properties in more detail. From the orbit

equation, Eq. (9.21),

1 — € cos 0

The maximum value of r occurs at 6 = 0:

9.23

the minimum value of r occurs at 6

_ r0
?*min — - ,

1 + €

The length of the major axis is

9.24

9.25
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Expressing r0 and e in terms of E, I, /*, C by Eq. (9.19) and (9.20)
gives

A 2 r °

9.26

The length of the major axis is independent of I; orbits with the
same major axis have the same energy. For instance, all the
orbits in the sketch correspond to the same value of E.

The ratio rmax/rmin is

^max r o / ( l - e)

L±€

0
0.9

TABLE 9.1

When e is near zero, rmax/rmin « 1 and the ellipse is nearly cir-
cular. When e is near 1, the ellipse is very elongated. The shape
of the ellipse is determined entirely by e; r0 only supplies the scale.

Table 9.1 gives the eccentricities of the orbits of the planets and
Halley's comet. The table reveals why the Ptolemaic theory of
circles moving on circles was reasonably successful in dealing with
early observations. All the planetary orbits, except those of Mer-
cury and Pluto, have eccentricities near zero and are nearly cir-
cular. Mercury is never far from the sun and is hard to observe,
and Pluto was not discovered until 1930, so that neither of these

PLANET ECCENTRICITY

Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
Pluto
Halley's Comet

0.206
0.007
0.017
0.093
0.048
0.055
0.051
0.007
0.252
0.967
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planets was an impediment to the Ptolemaists. Mars has the
most eccentric orbit of the easily observable planets, and its
motion was a stumbling block to the Ptolemaic theory. Kepler
discovered his laws of planetary motion by trying to fit his calcula-
tions to Brahe's accurate observations of Mars' orbit.

Note 9.1 derives the geometric properties of elliptical orbits.
We turn now to some examples.

Example 9.5 Satellite Orbit

A satellite of mass m = 2,000 kg is in elliptic orbit about the earth. At
perigee (closest approach to the earth) it has an altitude of 1,100 km and
at apogee (farthest distance from the earth) its altitude is 4,100 km.
What are the satellite's energy E and angular momentum 11 How fast
is it traveling at perigee and at apogee?

Since m <C Me, we can take /* « m and assume that the earth is fixed.
The radius of the earth is Re = 6,400 km, and the major axis of the orbit
is therefore

A = [1,100 + 4,100 + 2(6,400)]km

= 1.8 X 107 m.

Knowing A, we can find E from Eq. (9.26):

C
or E =

A

C = GmMe = mgRe2, since g = GMe/Re
2- Numerically,

C = (2 X 103)(9.8)(6.4 X 106)2 = 8.0 X 1017 J-m.

E=~A

= -4.5 X 1010

The initial energy

GmMe

Re

C

Re

= -12.5 X 10

J.

of the satellite before launch was

10 J.

The energy needed to put the satellite into orbit, neglecting losses due
to friction, is E - Ei: = 8 X 1010 J.
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We can find the angular momentum from the eccentricity. Since

rmin = —-2— and rmax =
1 - e

we have

(1 + €)rmin = (1 - e)rma:

and

€ =
' max ' min

'max

^raax

3 X

1" 'min

'min

A

103

1.8 X 104

_ 1

" 6

From the definition of e, Eq. (9.20),

* i +

mC2

which yields

I = 1.2 X 1014 kg-m2/s.

We can find the speed v of the satellite at any r from the energy
equation

At perigee, r = (1,100 +6,400) km = 7.5 X 106 m, and the speed at
perigee is

vp = 7,900 m/s.

va To find the speed at apogee, va, most simply, note that at apogee and
perigee the velocity of the satellite is purely tangential. Hence, by con-
servatipn of angular momentum,

flVprp = lAVaTa,

and we find that

5,600 m/s.
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Suppose that a body is projected from the surface of the earth
with initial velocity v0. If v0 is less than the escape velocity,
1.12 X 104 m/s, the total energy of the body is negative, and it
travels in an elliptic orbit with one focus at the center of earth.
As the drawing on the left shows, the body inevitably returns to
earth.

In order to put a spacecraft into orbit around the earth, the
magnitude and direction of its velocity must be altered at a point
where the old and new orbits intersect. Orbit transfer maneuvers
are frequently needed in astronautics. For example, on an
Apollo moon flight the vehicle is first put into near earth orbit
and is then transferred to a trajectory toward the moon. The
next example illustrates the physical principles of orbit transfer.

Example 9.6 Satellite Maneuver

One of the commonest orbit maneuvers is the transfer between an ellip-
tical and a circular orbit. This maneuver is used to inject spacecrafts
into high orbits around the earth, or to put a planetary exploration satel-
lite into a low orbit for surface inspection.

Suppose, for instance, that we want to transfer the satellite of Example
9.5 into a circular orbit at perigee, as shown in the sketch. Let E and I
be the initial energy and angular momentum of the satellite and let Ef,
V be the parameters for the new orbit.

We start our analysis by finding E, I, E', V. For simplicity, we shall
assume that the amount of fuel burned by the satellite's rockets at
transfer is negligible compared with the satellite's mass m = 2,000 kg.

From Eq. (9.26), E = - C / A . Since A/rp = 18 X 106/(7.5 X 106) = V">
we have

*--!£.
12 rv

rp is the radius at perigee, hence the radius of the desired circular orbit.
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An easy way to find I is to use the one dimensional energy equation,
Eq. (9.9):

2 2mr2 r

At perigee, r = 0 and r = rpt and we find

I2 = imCrp.

For the circular orbit, the major axis is 2rp and therefore

f = 0 for the circular orbit, and from the one dimensional energy
equation,

E' =
2mrp

2 rp

which yields

V2 = mCrp. 5

How can we switch from E, I to E', V? Since E' < E and V < I, we
want to apply a braking thrust in order to reduce both the energy and the
angular momentum. Thrust in the radial direction at perigee changes
the energy but not the angular momentum, whereas tangential thrust
changes both parameters. The old and new orbits are tangential where
they intersect, and we might suspect that tangential thrust alone would
be sufficient. We now show that this is correct.

At perigee, v is purely tangential, and tangential thrust changes the
speed from v to v'. From the energy equation,

1 C
E = -mv2 - •->

2 r

and at perigee

v2

m \ rv)
_ 7 C

6 mrv

using Eq. (1). Similarly,

m

mrp

using Eq. (4).
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We now check to see if the angular momentum has its required value.
At perigee, v is perpendicular to r and

as we have already found, Eq. (3). Similarly,

V = mrpv'

C
mrv

mrp

which is the required value according to Eq. (5).
The maneuver can be executed by applying a braking thrust tangential

to the orbit at perigee to reduce the speed of the satellite from v =

'C/Onrp) = 7,300 m/s.\/7C/(6mrp) = 7,900 m/s to v' =
Practical orbit maneuvers are generally planned to economize on the

fuel. According to our discussion of rockets in Sec. 3.5, if the mass of
the spacecraft changes from Mi to Mi — AM during the rocket burn,
its velocity changes by

Therefore, the smaller the change in speed required by a maneuver, the
more economical of fuel it is.

The maneuver described in this example reaches the maximum effi-
ciency. At transfer,

E - E' = imv2 - imv'2

= imv2 — im(v — Av)2

« mv • Av.

|v| is greatest at perigee, and since Av is parallel to v, |Av| is least there
to obtain the needed value of E — Ef.

9.7 Kepler's Laws

Johannes Kepler was the assistant of the sixteenth century Danish

astronomer Tycho Brahe. They had a remarkable combination of

talents. Brahe made planetary measurements of unprecedented

accuracy, and Kepler had the mathematical genius and fortitude to
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show that Brahe's data could be fitted into three simple empirical
laws. The task was formidable. It took Kepler 18 years of labor-
ious calculation to obtain the following three laws:

1. Each planet moves in an ellipse with the sun at one focus.

2. The radius vector from the sun to a planet sweeps out equal
areas in equal times.

3. The period of revolution T of a planet about the sun is related
to the major axis of the ellipse A by

T2 = kA\

where k is the same for all the planets.

Kepler's first law follows from the results of the last section;
elliptic orbits are characteristic of the inverse square law force.
The second law is a general feature of central force motion as we
demonstrated in Example 6.3.

Kepler's third law is easily proved by the following trick: We
start with the definition of angular momentum, Eq. (9.8a),

2de

l = »rJt'

which can be written

I
rdB —dt = | r 2 d6. 9.27

2/z

But ir2dd is a differential element of area in polar coordinates.
Over one complete period, the whole area of the ellipse is swept
out, and integration of Eq. (9.27) yields

— T = area of ellipse = irab, 9.28
2M

where a = A/2 is the semimajor axis and b is the semiminor axis.
From Eq. (9.26),

(-2E)

and from Note 9.1,
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Equation (9.28) becomes

(-2E*)

= & A\ 9.29

using A = C/(-E). Since C = GMm and n = Mm/(M + m),
we obtain finally

9 - 3 0

This result shows that Kepler's third law is not exact; T2/Az

depends slightly on the planet's mass. However, even for Jupi-
ter, the largest planet, m/M is only 1/1,000, so that Kepler's third
law holds to good accuracy in the solar system.

Kepler's laws also apply to the motion of satellites around a
planet. In Table 9.2 we show how his third law, the law of periods,
holds for a number of artificial earth satellites. The ratio A*/T2

is constant to a fraction of a percent, although the periods vary
by nearly a factor of 100. A more refined check would take into
account the nonspherical shape of the earth and perturbations
due to the moon.

TABLE 9.2*
SATELLITE

Cosmos 358
Explorer 17
Cosmos 374
Cosmos 382
ATS 2
15th Molniya 1
Ers 13
Ogo 3
Explorer 34
Explorer 28

€

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

002
047
104
260
455
738
887
901
940
952

A, km

13,823
13,928
15,446
18,117
24,123
52,537

117,390
135,270
224,150
273,740

T, min

95.2
96.39

112.3
143
219.7
706

2,352
2,917
6,225
8,400

Ay.

2.91
2.91
2.92
2.91
2.91
2.91
2.92
2.91
2.91
2.91

X
X
X
X
X
X
X
X
X
X

108

108

108

108

108

108

108

108

108

108

* Data taken from the data catalogs of the National Space Science Data Center
and the World Data Center A. The catalogs give satellite altitudes relative to the
surface of the earth; we assumed the diameter of the earth to be 12,757 km in
calculating A
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Example 9.7 The Law of Periods

Here is a more general way of deriving the law of periods. Starting from
Eq. (9.13) we have, with U(r) = -C/r,

dt = M /
Jta Jra

rdr
2/xCr -

The integral is listed in standard tables. For the case of interest, E < 0,
we find

w _,__. + 2/zCr - I2

tb - ta =

— [ — 1 — arcsm [ — )
\2EJ <y/-2»E \ V M

2 C 2 + 2fxEl2/

Fortunately this result can be greatly simplified. For a complete period,
h — ta = T, and r& = ra. The first term on the right hand side vanishes,
and in the second term, the arcsine changes by 2TT. The result is

T =

(-2E*)

as we found earlier, Eq. (9.29).

Note 9.1 Properties of the Ellipse

The equation of any conic section is, in polar coordinates,

r 1
1 - € COS 0

Converting to cartesian coordinates r = \ / x 2 + y2, x = r cos 6, Eq. (1)
becomes

(1 - e2)x2 - 2r0x + y2 = r0
2. 2

The ellipse corresponds to the case 0 < e < 1. The ellipse described
by Eqs. (1) and (2) is symmetrical about the x axis, but its center does not
lie at the origin.



404 CENTRAL FORCE MOTION

We can use Eq. (1) to determine the important dimensions of the
ellipse. The maximum value of r, which occurs at 6 = 0, is

x r =
- €

The minimum value of r, which occurs at 0 = TT, is

rmin

The major axis is

•"• 'max I ' min

2r0

1 - e2'

The semimajor axis is

A
a = —

2

1 - e2

The distance from the origin to the center of the ellipse is

XQ = a — rm i n

We see that the eccentricity is equal to the ratio Xo/a.

To find the length of the semiminor axis b = Xo2, note that
the tip of the semiminor axis has angular coordinates given by cos 6 =
xo/r. We have

1 — € COS I

To

1 — exo/r
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r = r0

1

Hence

b = \

-h €£0 = ro

- e2

/ r 2 - x0
2 = fe) ' 1 - €2

Finally, we shall prove that the origin lies at a focus of the ellipse.
According to the definition of an ellipse, the sum of the distances from
the foci to a point on the ellipse is a constant. Hence, for the ellipse
shown in the sketch we need to prove r + r' = constant. By the law of
cosines,

r '2 = r2 + AXQ2 _ 4 n r o c o s 0. 5

From Eq. (1) we find that

r c o s 0 =

Equation (5) becomes

Using the relation x0 — roe/(l — e2) from Eq. (4) gives

i - « (1 -

The right hand side is a perfect square.

= ± ( r - A).
Since A > r, we must choose the negative sign to keep r' > 0.
Therefore,

rf + r = A

= constant.
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To conclude, we list a few of our results in terms of E, I, fx, C for the
inverse square force problem U(r) = —C/r. When using these for-
mulas, E must be taken to be a negative number. From Eqs. (9.19) and
(9.20),

Z2

and

e = V l + 2El2/(nC2).

Hence,

semimajor axis a =

semiminor axis b =

Xo
1 - €2

Problems 9.1 Obtain Eqs. (9.7a and b) by differentiating Eqs. (9.8a and b) with
respect to time.

9.2 A particle of mass 50 g moves under an attractive central force of
magnitude 4r3 dynes. The angular momentum is equal to 1,000 g*cm2/s.

a. Find the effective potential energy.

b. Indicate on a sketch of the effective potential the total energy for
circular motion.

c. The radius of the particle's orbit varies between To and 2r<). Find ro.
Ans. (c) r0 « 2.8 cm

9.3 A particle moves in a circle under the influence of an inverse cube
law force. Show that the particle can also move with uniform radial
velocity, either in or out. (This is an example of unstable motion. Any
slight perturbation to the circular orbit will start the particle moving
radially, and it will continue to do so.) Find 6 as a function of r for motion
with uniform radial velocity v.

9.4 For what values of n are circular orbits stable with the potential
energy U(r) = — A/rn, where A > 0?

9.5 A 2-kg mass on a frictionless table is attached to one end of a mass-
less spring. The other end of the spring is held by a frictionless pivot.
The spring produces a force of magnitude 3r newtons on the mass, where
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r is the distance in meters from the pivot to the mass. The mass moves
in a circle and has a total energy of 12 J.

a. Find the radius of the orbit and the velocity of the mass.

b. The mass is struck by a sudden sharp blow, giving it instantaneous
velocity of 1 m/s radially outward. Show the state of the system before
and after the blow on a sketch of the energy diagram.

c. For the new orbit, find the maximum and minimum values of r.
9.6 A particle of mass m moves under an attractive central force Kr4

with angular momentum I. For what energy will the motion be circular,
and what is the radius of the circle? Find the frequency of radial oscil-
lations if the particle is given a small radial impulse.

9.7 A rocket is in elliptic orbit around the earth. To put it into an escape
orbit, its engine is fired briefly, changing the rocket's velocity by AV.
Where in the orbit, and in what direction, should the firing occur to attain
escape with a minimum value of A7?

9.8 A projectile of mass m is fired from the surface of th'e earth at an
angle a from the vertical. The initial speed v0 is equal to wGMe/Re.
How high does the projectile rise? Neglect air resistance and the earth's
rotation. (Hint It is probably easier to apply the conservation laws
directly instead of using the orbit equations.)

Ans. clue, if a = 60°, then rmax = 3#c/2

9.9 Halley's comet is in an elliptic orbit about the sun. The eccentricity
of the orbit is 0.967 and the period is 76 years. The mass of the sun is
2 X 1030 kg, and G = 6.67 X 10"11 N-m2/kg2.

a. Using these data, determine the distance of Halley's comet from
the sun at perihelion and at aphelion.

b. What is the speed of Halley's comet when it is closest to the sun?

9.10 a. A satellite of mass m is in circular orbit about the earth. The
radius of the orbit is r0 and the mass of the earth is Me. Find the total
mechanical energy of the satellite.

b. Now suppose that the satellite moves in the extreme upper atmos-
phere of the earth where it is retarded by a constant feeble friction force
/ . The satellite will slowly spiral toward the earth. Since the friction
force is weak, the change in radius will be very slow. We can therefore
assume that at any instant the satellite is effectively in a circular orbit
of average radius r. Find the approximate change in radius per revolu-
tion of the satellite, Ar.

c. Find the approximate change in kinetic energy of the satellite per
revolution, AK.

Ans. (c) AK = +2wrf (note the sign!)

9.11 Before landing men on the moon, the Apollo 11 space vehicle was
put into orbit about the moon. The mass of the vehicle was 9,979 kg
and the period of the orbit was 88 min. The maximum and minimum
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distances from the center of the moon were 1,861 km and 1,838 km.
Assuming the moon to be a uniform spherical body, what is the mass
of the moon according to these data? G = 6.67 X 10~n N-m2/kg2.

9.12 A space vehicle is in circular orbit about the earth. The mass of
the vehicle is 3,000 kg and the radius of the orbit is lRe = 12,800 km. It
is desired to transfer the vehicle to a circular orbit of radius AR€.

a. What is the minimum energy expenditure required for the transfer?

b. An efficient way to accomplish the transfer is to use a semielliptical
orbit (known as a Hohmann transfer orbit), as shown. What velocity
changes are required at the points of intersection, A and B?
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10.1 Introduction and Review

The motion of a mass on a spring, better known as a harmonic
oscillator, is familiar to us from Chaps. 2 and 4 and from numerous
problems. However, so far we have considered only the idealized
case in which friction is absent and there are no external forces.
In this chapter we shall investigate the effect of friction on the
oscillator, and then study the motion when the mass is subjected
to a driving force which is a periodic function of time. Finally, we
shall use the harmonic oscillator to illustrate a remarkable
result—the possibility of predicting how a mechanical system
will respond to an applied driving force of any given frequency
merely by studying what the system does when it is put into motion
and allowed to move freely.

We begin by reviewing the properties of the frictionless har-
rnonic oscillator which we discussed at the end of Chap. 2. The
prototype oscillator is a mass m acted on by a spring force
Spring = — kx, where x is the displacement from equilibrium.
The equation of motion is mx = — hx, or

mx + kx = 0. 10.1

The solution is

x = B sin o)0t + C cos o)0t, 10.2

where

10.3co0 = \ / —

We shall use w0 rather than co, as in previous chapters, to repre-
sent the natural frequency of the oscillator. B and C are arbi-
trary constants which can be evaluated from a set of given initial
conditions, such as the position and the velocity at a particular
time.

Standard Form of the Solution

We can rewrite Eq. (10.2) in the following more convenient form:

x = A cos (o)0t + <t>)t 10.4

where A and <t> are constants. To show the correspondence
between Eqs. (10.2) and (10.4) we make use of the trigonometric
identity

cos (a + 0) = cos a cos 0 — sin a sin 0.
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By applying this to Eq. (10.4) and equating Eqs. (10.2) and (10.4),
we obtain

A cos o)0t cos 0 — A sin uot sin </> = B sin oi0t + C cos coot.

For this to be true at all times, the coefficients of the terms in
sin o)0t and cos coot must be separately equal. Hence, we have

A c o s <t> = C

A sin <t> = -B, 10.5a

which are readily solved to yield

A = (B2 + C2f
B

tan <t> = - — 10.56

This result shows that the two expressions Eqs. (10.2) and (10.4)
for the general motion of the harmonic oscillator are equivalent.
We shall generally use Eq. (10.4) as the standard form for the
motion of a frictionless harmonic oscillator.

Amplitude A

Nomenclature

There are a number of definitions with which we should be
familiar. Consider the expression

x = A cos (uot + </>).

x is the instantaneous displacement of the particle at time t.

A is the amplitude of the motion, measured from zero displace-
ment to a maximum.

co0 is the frequency (or angular frequency) of motion. co0 = V/fc/m
rad/s. The circular frequency v = WO/2TT HZ (1 Hz = 1 cycle per
second).

0 is the phase factor or phase angle.

T is the period of the motion, the time required to execute one
complete cycle. T = 2TT/CO0.

Example 10.1 Initial Conditions and the Frictionless Harmonic Oscillator

Suppose that at time t — 0 the position of the mass is x(0) and its velocity
v(0). If we express the motion in the form of Eq. (10.2) we have

x = B sin coo£ + C cos coot

V = X

= COQB COS COQ£ — cooC s in coot.
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Evaluating these at t = 0 gives

C = x(p)

If we begin with the standard form x = A cos (coo£ + <£)» the displace-
ment and velocity are

x = A cos (o)0l + <f>)

v = — oooA s in (a>o2 + </>).

For t = 0r

#(0) = A cos <f>

v(0) = — ooo A sin <f>,

from which we find

tan 0 =

Energy Considerations

If we take the potential energy to be 0 at x = 0f we have

U = ikx2

= ikA2 cos2 (o)0t + *). 10.6a

The kinetic energy is

K = imv2

= imo)0
2A2 sin2 (co0* + </>), 10.66

where we have used

v = x = — co0A sin (co0£ + </>).

Since co0
2 = * / m , Eq. (10.66) becomes K = ikA2 sin2 («0* + «)•

The total energy is

^ = X + [/ = |fcA2 [cos2 (wo< + </>) + sin2 (co0* + </>)]

£? = ikA2. 10.7

Hence, the total energy is constant, a familiar feature of motion
when only conservative forces act.
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A

Time Average Values

In the following sections we need the concept of the time average
value (/) of a function f(t). Consider/(0, some function of time,
and an interval ti < t < t2 as shown in the sketch. (/), the time
average value of fit), is defined so that the rectangular area shown
in the sketch, (t2 — ti)(f), equals the actual area under the curve
between h and t2'-

= ft[
2f(t)dt

or

sin0

0

- 1

sin20

1

0

- 1

2?r

(a)

J_
2?r

(b)

To make this idea more concrete, suppose that/(O represents the
rate of flow of water into a bucket in liters per second. Then the
volume of water passing into the bucket in a short interval dt is
f(Jt) dt, and the total volume passing into the bucket in the interval
t2 - k is T V ( O dt. If the flow were steady, the rate would have
to be </) for the same volume of water to accumulate in the time
interval t2 — h.

For our work with the harmonic oscillator we shall need the time
averages of sin (ut) and sin2 (coO over one cycle of oscillation. Here
is a graphical device for calculating these averages. The first
sketch shows sin 6 for the interval 0 < 6 < 2ir, where 6 = ut.
It is apparent that the area above the axis equals the area below
the axis, so that (sin 6) = 0. In the second sketch, we show sin2 6.
This varies between 0 and 1, and by symmetry we see that its
average value is | . Thus (sin2 6) = | . By identical arguments
(cos 6) = 0, (cos2 6) = i, and you can also show graphically that
these results hold as long as the average is taken over a whole
period of oscillation, irrespective of the starting point. These
results can also be proven analytically; we leave this task for a
problem.

Average Energy

Returning to the frictionless harmonic oscillator, we can now eval-
uate the time average values of the potential and kinetic energies
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over one period of oscillation 0 < t < T. From Eq. (10.6a)f

U = |fcA2 cos2 (a>ot + *)

(U)

(We have used (cos2 0) = i for an average over one period.) Simi-
larly, from Eq. (10.66),

(K) = |mw 0
2 A 2 (sin2 (o>0t + <£)>

Since a>0
2 = k/m, we have

(K) = ifcA2

The time average kinetic and potential energies are equal. When
friction is present, this is no longer exactly true.

10.2 The Damped Harmonic Oscillator

Our next step is to consider the effect of friction on the harmonic
oscillator. We are going to restrict our discussion to a very special
form of friction force, the viscous force. Such a force arises when
an object moves through a fluid, either liquid or gas, at speeds
which are not so large as to cause turbulence. In this case the
friction force / is of the form

/ = -bv,

where & is a constant of proportionality that depends on the shape
of the mass and the medium through which it moves, and where
v is the instantaneous velocity. Although this is a special friction
force, we should emphasize that it is the type most often encoun-
tered and that our analysis has wide applicability. Although
the discussion here is devoted to a mechanical oscillator, equa-
tions of identical form describe many other oscillating systems.
For example, electric current can oscillate in certain electric cir-
cuits; the electrical resistance of the circuit plays a role exactly
analogous to a viscous retarding force.

The total force acting on the mass m is

F = FSpring + /

= — kx — bv.
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Lightly damped

The equation of motion is

mx = — kx — bx,

which can be rewritten as

x + yx + a>o2£ = 0. 10.8

x = Ae-^/2>< cos (co!* + 0).

A and <t> again stand for arbitrary constants and

Here y stands for b/m and, as before, co0
2 = k/m. The units of

7 are second"1.
Equation (10.8) is a more complicated differential equation than

any we have yet encountered. We leave the details of the solu-
tion for Note 10.1 and merely state the result here:

10.9

10.10

This solution is valid whence2 — T2/4 > 0, or, equivalent^, y < 2co0.
(Other cases are discussed in Note 10.1). Substituting Eq. 10.9
into Eq. (10.8) to verify the solution makes a good exercise.

The motion described by Eq. (10.9) is known as damped harmonic
motion. A typical case is shown in the top sketch. The motion
is reminiscent of the undamped harmonic motion described in the
last section. In fact, we can rewrite Eq. (10.9) as

x = A(t) cos («i< + <£),

Heavily damped

where

A(t) = Ae-w2K 10.11

The motion is similar to the undamped case except that the ampli-
tude decreases exponentially in time and the frequency of oscilla-
tion «i is less than the undamped frequency co0. Incidentally,
although the concept of a definite frequency can be strictly applied
only to a pure sine or cosine function, wi is commonly called the
frequency of oscillation. The zero crossings of the function
Ae~^!2)tcos (o)it + 0) are separated by equal time intervals
T = 2TT/WI, but the peaks do not lie halfway between them.

Before we investigate damped harmonic motion quantitatively,
it will be helpful to look at it qualitatively. The essential features
of the motion depend on the ratio 7/wi. If 7 / w i « 1, A(t)
decreases very little during the time the cosine makes many
zero crossings; in this regime, the motion is called lightly damped.
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If T/O>I is comparatively large, A(t) tends rapidly to zero while
the cosine makes only a few oscillations. This motion is called
heavily damped. For light damping, o?i « co0, but for heavy
damping wi can be significantly smaller tt\an o>0.

Energy

By considering the energy of the system we can see why the
amplitude must decrease with time. From the work-energy
theorem of Chap. 4,

E(t) = #(0) + WfTict,

where

E(t) = \mv2 + \kx2 = K(t) + U(t)

and

TFfrict = work done by friction from time 0 to time L

The dissipative friction force, / = — bv, opposes the motion.
Hence,

= - f* bv2 dt < 0. 10.12

Physically, E(t) decreases with time because the friction force
continually dissipates energy. We can find how E(Jt) depends on
time by calculating the kinetic and potential energies K(t) and
U(t).

To evaluate K(t) = imv2 we need the velocity v. The time
derivative of Eq. (10.9) gives

v = -Ae~^/2)t wi sin (out + <fi) + - c o s (a>iZ + </>)

= -coiA<r^/2>< I sin fat + </>) + - (—) cos fat + <j>) V 10.13

If the motion is only lightly damped, 7/coi « 1, and the coefficient
of the second term in the bracket is small. Let us assume that
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0.368 Eo

the damping is so small that we can neglect the second term
entirely. In this case we have

v = -onAe-

and

K(t) = imv2

sin fat + 0),

v sin2 fat + 0).

The potential energy is

U(t) = \kx2

= ikA^-y' cos2 (coiZ + 0)

and the total energy is

E(t) = K(t) + U(t)
sin2 (coiZ + 0) + k cos2 (coi* +

10.14a

10.146

Since the damping is assumed to be small, we can simplify the
term in brackets by replacing a>i2 by co0

2t and using the relation
co0

2 = k/m.

E(t) = cos2 fat + </>) + k sin2 fat + </>)]

10.15

At t = 0 the energy of the system is

Eo = ikA2

and we can rewrite Eq. (10.15) as

E(t) = *. 10.16

This is a remarkably simple result. The energy decreases
exponentially in time.

The decay can be characterized by the time r required for the
7 energy to drop to e~l = 0.368 of its initial value.

E(T) =

f This approximation can be justified for T/COI <3C1 as follows:

.11
4

•KG)']
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Hence, yr = 1.

1 m
r = - = - • 10.17

y b

T is often called the damping time (or, alternatively, the time
constant or characteristic time) of the system. In the limit of
light damping, y —> 0 and r—> °o; E is effectively constant and
the system behaves like an undamped oscillator.

The Q of an Oscillator

The degree of damping of an oscillator is often specified by a
dimensionless parameter Q, the quality factor, defined by

energy stored in the oscillator

energy dissipated per radian

By energy dissipated per radian we mean the energy lost during
the time it takes the system to oscillate through one radian. In
the period T = 2TT/COI, the system oscillates through 2ir radians.
Thus the time to oscillate through one radian is T/2v = l /« i .

Q is easily calculated for the lightly damped case. The rate of
change of energy is, from Eq. (10.16),

= -yE.

The energy dissipated in a short time A2 is the positive quantity

dE
AE « A*

dt

= yE At

One radian of oscillation requires time A2 = 1/wi, and the energy
dissipated is yE/wi. Hence, the quality factor is

* - « - 10.19

A lightly damped oscillator has Q » 1. A heavily damped system
loses its energy rapidly and its Q is low. A tuning fork has a Q
of a thousand or so, whereas a superconducting microwave cavity
can have a Q in excess of 10v. An undamped oscillator has infi-
nite Q.
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Example 10.2 The Q of Two Simple Oscillators

A musician's tuning fork rings at A above middle C, 440 Hz. A sound
level meter indicates that the sound intensity decreases by a factor of
5 in 4 s. What is the Q of the tuning fork?

The sound intensity from the tuning fork is proportional to the energy
of oscillation. Since the energy of a damped oscillator decreases as
e~yt, we can find y by taking the ratio of the energy at t = 0 to that at
« = 4s.

WO)

Hence

4T = in 5 = 1.6

7 = 0.4 s"1,

and

0 _ «i _ 2TT(440)

" 7 0A~~

« 7000.

The energy loss is due primarily to the heating of the metal as it bends.
Air friction and energy loss to the mounting point also contribute. (The
symmetrical design of a tuning fork minimizes loss to the mount.)
Incidentally, if you try this experiment, bear in mind that the ear is a
poor sound level meter because it does not respond linearly to sound
intensity; its response is more nearly logarithmic.

A rubber band exhibits a much lower Q than a tuning fork primarily
because of the internal friction generated by the coiling of the long chain
molecules. In one experiment, a paperweight suspended from a hefty
rubber band had a period of 1.2 s and the amplitude of oscillation
decreased by a factor of 2 after three periods. What is the estimated
Q of this system?

From Eq. (10.11) the amplitude is given by Ae^'®*. The ratio of the
amplitude at t = 0 to that at t = 3(1.2) = 3.6 s is

Hence

I.87 = In 2 = 0.69

or

7 = 0.39 s"1.
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Therefore

7
_ 2ir/T

~ 0.39

_ 2TT/1.2

0.39

= 13.

You may wonder whether it is justifiable to use the light damping result,
Q = coi/7, when Q is so low. The approximations involved introduce
errors of order (7/wi)2 = (1/Q)2. For Q > 10 the error is less than 1
percent.

It is interesting to note that the damping constants for the tuning
fork and for the rubber band are very nearly the same. The tuning
fork has a much higher Q, however, because it goes through many more
cycles of oscillation in one damping time and loses correspondingly less
of its energy per cycle.

Example 10.3 Graphical Analysis of a Damped Oscillator

The illustration is drawn from a photograph of an oscilloscope trace of
the displacement of an oscillating system versus time. We immediately
recognize that the system is a damped harmonic oscillator. The fre-
quency coi and quality factor Q can be found from the photograph.
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The time interval from ta to h is 8 ms. There are 28.5 cycles (i.e.,
complete periods) in this interval. (Check this for yourself from the
data.) The period of oscillation is T = 8 X HT3 s/28.5 = 2.81 X 10~4 s.
The angular frequency is o?i = 2w/T = 22,400 rad/s. The corresponding
circular frequency is v = coi/2?r = 3,560 Hz.

In order to obtain the quality factor Q — W1/7, the damping constant
must be known. From Eq. (10.11) the amplitude is Ae~{y/2)t. This func-
tion describes the envelope of the displacement curve. The envelope
has been drawn with a dashed curve on the photograph. At time ta the
envelope has magnitude .4a = 2.75 units. When the envelope decays
by a factor e~l = 0.368, its magnitude is 1.01 units. From the photograph
this occurs at tc = 5.35 ms, measured from ta. Hence, e~{yl2)tc = e~l,
or 7 = 2/tc = 374 s~K The quality factor is Q = W1/7 = 60.

Now for a word about the system. This is not a mechanical oscillator,
nor even an electrical oscillator. The signal is produced by radiating
atomic electrons in a small volume of hydrogen gas. The signal was
greatly amplified for oscilloscope display. Furthermore, the atoms were
actually radiating at 9.2 X 109 Hz. Since this is much too high for the
oscilloscope to follow, the frequency was translated to a lower value by
electronic means. This did not affect the shape of the envelope, and
our measured value of 7 is correct. If we use the true value of
the frequency of the atomic system, we find that the actual Q is

_ 2TT X 9.2 X 109

374

= 1.6 X 108.

Such a high Q is virtually unattainable for mechanical systems, although
it is not unusual in an atomic system.

yQ cos ut

^000000000000000000

10.3 The Forced Harmonic Oscillator

The Undamped Forced Oscillator

We next investigate the effect of an applied time varying force
F(t) on a frictionless harmonic oscillator. In the case of a mass
on a spring, the force can be applied by jiggling the end of the
spring. To be concrete, suppose that the end of the spring
moves according to y = y0cosut, as shown in the sketch. The
change In length of the spring from its equilibrium length Is
x — y, where x is the position of the mass. The equation of
motion, neglecting damping, is mx = — k(x — y), or, since
y = 2/0 cos at,
mx + kx = Fo COS ut 10.20
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where Fo = ky0. Fo cos cot is called the driving force. Fo is the
amplitude of the driving force (note that Fo has the dimensions
of force) and co is the driving frequency, a quantity we are free to
vary.

It is apparent that we have chosen a very special form for the
driving force in Eq. (10.21). Nevertheless, the solution is of quite
general interest. It turns out that any periodic function of time
can be represented as a sum of sinusoidal terms (this is the basis
of Fourier's theorem), so that understanding the response of the
harmonic oscillator to the force F0cos cot lays the groundwork for
finding the response to any periodic force. Furthermore, many
important cases involve the simple sinusoidal force we assume
here; two examples are the response of a bound electron to an
electromagnetic field (a problem which arises in the classical
theory of the scattering of light) and the tidal response of a lake
to the periodic force of the moon or sun. So, without further
apology we turn to the solution of Eq. (10.20).

A general procedure for solving Eq. (10.20) is given in Note 10.2,
but in fact this equation is so simple that we can guess the correct
solution by the following argument: the right hand side of the
equation varies in time as cos cot. It seems plausible that the
left hand side involves the same time dependence. We try the
solution

x = A cos cot.

Substituting this in Eq. (10.20) yields

(—raw2 + k)A cos cot — Fo COS cot,

which is valid provided that we choose

A Fo
k — mco2

= — > 10.21

ra wo — co2

where co0
2 = k/m, as in the last section. Our solution becomes

F 1
x = — — cos cot. 10.22

ra co0
z — or

The solution we found in Eq. (10.22) is quite different in nature
from the solution of Eq. (10.4) or (10.9). There are no arbitrary
constants in Eq. (10.22); the motion is fully determined. Physi-
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cally, this is surprising, since we should be able to specify the
initial position and velocity of any particle obeying Newton's laws.
The difficulty is that although the solution in Eq. (10.22) is correct,
it is not complete. The complete solution is1

ox = —
m co0

2 _
- cos ut + B cos (uot + <t>), 10.23

where B and <f> are arbitrary. As we have seen in Sec. 10.1, the
term B cos (coot + <f>) is the general solution for the motion of the
free undamped oscillator, mx + kx = 0. For a damped system,
the amplitude B would decrease exponentially in time and even-
tually we would be left with the steady-state solution

1
x = — • COS 0)t.

m o)0 — or

The effects of the initial conditions die out given enough time. In
the remainder of this chapter we shall concentrate on the steady-
state solution.

Resonance

The amplitude of oscillation, Eq. (10.21), is shown in the sketch
as a function of the driving frequency co. A approaches zero as
co—• oo and has a finite value at co = 0, but it increases without
limit at co = co0, when the oscillator is driven at its natural fre-
quency. This great increase of the amplitude when a system is
driven at a certain frequency is known as resonance. co0 is often
called the resonance, or natural, frequency of this system. Equa-
tion (10.21) predicts that A —> oo as co—• co0, but since no physical
system can have infinite amplitude, it is apparent that our solu-
tion is inadequate at resonance. The difficulty is due to our
neglect of friction; when we take friction into account, we shall
see that although the amplitude may be large at resonance, it
remains finite.

Equation (10.21) asserts that A is positive for co < co0 and nega-
tive for co > co0. Negative amplitude means that if the force
varies as cos co£, the displacement varies as — cos cot. Since
—cos ut = cos (cot + TT), the negative sign is equivalent to a phase
shift of 7T radians (i.e., 180°) between the driving force and the
1 This solution can be verified by direct substitution. In the language of differ-
ential equations, the first term on the right in Eq. (10.23) is a particular solution
and the second term, B cos {cat + </>), is the general solution of the homogeneous
equation mx -{- kx = 0. These two terms represent the complete solution.
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displacement. For co < o>0f the displacement is in phase with
the driving force. This phase change through resonance of
180°, which is characteristic of all oscillating systems, is easily
demonstrated.

Example 10.4 Forced Harmonic Oscillator Demonstration

Break a long rubber band and suspend something like a heavy pocket
knife from one end, holding the other end in your hand. The resonant
frequency co0 is easily determined by observing the free motion. Now
slowly jiggle your hand at a frequency co < a>0: the weight will move in
phase with your hand. If you jiggle the system with co > coo, you will
find that the weight always moves in the opposite direction to your hand.
For a given amplitude of motion of your hand, the weight moves with
decreasing amplitude as o> is increased above co0. If you try to jiggle
the system at resonance co = coo, the amplitude increases so much that
the weight either flies up in the air or hits your hand. In either case
the system no longer behaves like a simple oscillator.

The phenomenon of resonance has both positive and negative
aspects in practice. By operating at the resonance frequency of
a system we can obtain a response of large amplitude for a very
small driving force. Organ pipes utilize this principle effectively,
and resonant electric circuits enable us to tune our radios to the
desired frequency. On the negative side, we do not want motions
of large amplitude in the springs of an automobile or in the crank-
shaft of its engine. To reduce response at resonance a dissipa-
tive friction force is needed. We turn now to the analysis of the
forced damped oscillator.

The Forced Damped Harmonic Oscillator

If the motion of the oscillating mass is opposed by a viscous
retarding force — bv, the total force is

K — t spring I F viscous ~T~ F driving

= — kx — bv + Fo cos ut

and the equation of motion can be written

mx + bx + kx = Fo cos cot.

Dividing by m and using y = b/m, co0
2 = k/m, we have the stan-

dard form

w
x + yx + cu0

2z = —° cos o)t. 10.24
m
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To find the steady-state solution we could again try the trick of
taking x = Acoswt. However, the term yx introduces a term
in sin ut which does not appear on the right hand side, so that
this trial solution is not adequate. This suggests that we try
x = B cos cot + C sin ut = A cos (ut + <j>). If this is substituted
into Eq. (10.23), you will find that the solution indeed fits provided
that A and 0 have the values

m [(coo2 - co2)2 + (C07)2]1

/ 7 « \
<t> = arctan I — - ) •

\coo — coy

10.25

A somewhat more formal method for obtaining this solution is
presented in Note 10.2.

The behavior of A and <t> as functions of o> depends markedly
on the ratio Y/CO0 as the sketches show. For light damping, A
is maximum for cu = co0f and the amplitude at resonance is

0

0
0

- 7 T

As 7—> 0, A(coo)—> oo, as we expect for an undamped oscillator.
Note also that as y —• 0, the phase change occurs more and more
abruptly. In the limit 7 = 0, the phase changes from 0 to — T
when co = co0.

1

- ^

1
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Resonance in a Lightly Damped System: The Quality Factor Q

Energy considerations simplified our discussion of the undriven
damped oscillator in Sec. 10.2, and, similarly, they will be useful
to us in the driven case. For the steady-state motion, the ampli-
tude is constant in time. Using

x = A cos (ut + <£) and v = —coA sin (cot + <t>),

we have

0.5 1.0 1.5 J*L
co0

K(t) =
U(t) =
and

= |fcA2cos2(coZ + </>)

E(t) = K(t) + U(t)
= £A2[ma>2 sin2 (<at + + k cos2 («* +

The energy is time-dependent and our analysis is simplified if we
focus on time average values, as we did in Sec. 10.1. Since
(cos2(co£ + 0)) = (sin2(w£ + 0)) = | , for an average over one
period, we have

10.26

o)2 + coo2).

Let us consider how (E) varies as a function of co. Using Eq.
(10.25) for A,

(U) = ifcA2

(E) = M2(m

1 Fp2 (CO2 + COQ2)

4~m [(^o2 - co2)2 + (co7)2]'
10.27

This expression is exact but awkward. It can be written in a
much simpler approximate form for the case of light damping,
where 7 «co0. To see this, consider the sketch of (2J(«)) for
Y/COO = 0.1 and Y/COO = 0.4. For 7 sufficiently small, (E(ta)) is

effectively zero except near resonance. Hence, there is not
much error introduced by replacing co by co0 everywhere in Eq.
(10.27) except in the term (co0

2 — co2)2 in the denominator, since
this term varies rapidly near resonance. Even this term can be
simplified as

(coo2 — co2) = [(coo + co)(coo — co)] ~ 2co0(coo — co).
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With this approximation, (!?(«)) takes the simple form

2co0
2

4 m 4co0
2(co — co0)

2 + co0
272

8 m (co - co0)
2 + ( T / 2 ) 2

10.28

The plot of the function [(co — co0)
2 + ( T / 2 ) 2 ] " 1 , which contains

the entire frequency dependence of (#(co)), is called a resonance
curve, or lorentzian. Resonance curves for several values of y are
plotted below. For concreteness, we have taken co0 = 8 rad/s.
7 is given in units of s"1.

7 = 1

10 12

A co

Let us look more closely at the resonance curve. Its maximum
height is 4/72. It falls to one-half maximum when

(co-coo)2 = (7 /2 ) 2

or when co — co0 = ± 7 / 2 . The full width of the curve at half
maximum value is often called the resonance width. If the
resonance curve drops to half its maximum value at co+ on the
high frequency side, and at co_ on the low frequency side, then
the resonance width is co+— co_ = 2(7/2) = 7. The resonance
width is denoted by Aco in the sketch at left. In general, we have

Ac* = 7. 10.29
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As 7 decreases the curve becomes higher and narrower, the range
of frequency over which the system responds becomes smaller,
and the oscillator becomes increasingly selective in frequency.

The frequency-selective property of an oscillator can be char-
acterized in a simple fashion by Q, the quality factor introduced
in Sec. 10.2. Recall that Q is defined as the ratio of energy stored
in the oscillator to energy lost per radian of oscillation. For a
lightly damped system oscillating freely, Q has the value

0.8con 1.2w0

7"

as we showed in Eq. (10.19). The same oscillator, when driven,
has a resonance curve with frequency width Ao> = y. Hence,
the ratio of resonance frequency to the width of the resonance
curve, coo/Aco, is coo/7 = Q- In fact, Q is often defined by

Q =
resonance frequency

frequency width of resonance curve
10.30

Incidentally, if we had applied the definition of Q in terms of
energy to the driven oscillator, the result would have been the
same, Q = 0)0/7. The proof of this is left for a problem.

Although Q is fundamentally defined in terms of energy, its
chief use in practice is to characterize the frequency response of
a system. The drawing shows two resonance curves with differ-
ent Q's. The heights at resonance have been made equal to
facilitate comparison of the widths. It is apparent that the sys-
tem with Q = 10 is considerably more selective than that with
Q = 5. As pointed out in Example 10.3, certain atomic systems
can have a Q greater than 108. The sharpness of the resonance
curve means that the system will not respond unless driven very
near its resonance frequency. Since the resonance frequency
is determined by atomic constants, the frequency of oscillation is
essentially independent of external influences. Frequencies from
such "atomic clocks" are so accurate that they have superseded
astronomical time standards.

Example 10.5 Vibration Eliminator

Occasionally one needs to reduce the effect of floor vibrations on a
delicate apparatus such as a sensitive balance or a precision optical sys-
tem. This can be accomplished by mounting the apparatus on an "air
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M

1

I*—,

I
Inertial frame

table" whose legs are hollow tubes with pistons supported by air pressure.
One such leg is shown schematically in the drawing. The area of the
column is .4, and the mass it supports is M.

The static forces on M are related by the equilibrium condition

PoA = Mg + PmtA,

where Po is the pressure of gas in the cylinder at equilibrium and Pat is
the atmospheric pressure on the upper face of M. For some air tables,
the weight Mg is much greater than the atmospheric force, and we shall
neglect the term P&tA in the following. Hence,

PoA = Mg.

The equilibrium height of M is h. Let x be the displacement of M
from equilibrium relative to an inertial frame. The smaller the value of
x, the more nearly motionless the table top will be in inertial space. Floor
vibrations cause the lower end of the table leg to move vertically a dis-
tance y. When M moves relative to the floor, the volume and the pres-
sure of the trapped gas change. If P is the instantaneous pressure in
the cylinder, the equation of motion of M is

Mx = PA - Mg.

According to Boyle's law, the pressure in the cylinder varies inversely
with volume for a gas at constant temperature. Therefore

PV

The

V =

= constant

= PoVo

= PoAh

volume

A{h +

Therefore

p PoVo
V

Pod -

V is

x —

- Po

X

y)-

h

h + x — y

In the last step we have assumed that the displacements x and y are
small compared with h, the height of the table leg.

The equation of motion becomes
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Since we are neglecting the atmospheric force, PQA = Mg, and the equa-
tion of motion is simply

Mx = ^-{-
h

h h

If the floor vibration is y = y0 cos oot, M moves like an undamped driven
oscillator. Using Eq. (10.22) we see that the solution of the equation is

X = XQ COS Wt,

where

coo — 0)

and

-4-
The object of the air suspension is to make the ratio

Xo co0

M

as small as possible. For co <<C coo, ô = 2/o and the vibration is
transmitted without reduction. For co ^> coo, xo/yo = — co0

2/co2, and
the amplitude of vibration is reduced. Thus, for the vibration eliminator
to be successful, the resonance frequency must be low compared with
the driving frequency. Since coo = vg/h, this requires as long a leg as
possible. (Note that the resonance frequency is independent of the
mass, a surprising aspect of this type of support.)

The system suffers from one fatal flaw; if vibration occurs near the
resonant frequency, the vibration eliminator becomes a vibration ampli-
fier. To avoid this, some damping mechanism must be provided. Often
this is accomplished with a device called a dashpot, which consists of a
piston in a cylinder of oil. The dashpot provides a viscous retarding
force —bv, where v is the relative velocity of its ends.

v = x - y.

The equation of motion is

Mx = ¥l(-x + y)-b(,x -y)
h

x + yx + ooo2x = o)0
2y + yy,
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where

7 M n

With y = y0 cos cot, this is the equation of a driven damped oscillator.
However, the motion of the floor has introduced an additional driving
term yy = —ycoyos'm cot. The steady-state amplitude x0 can be found
by substituting x = x0 cos (cot + <f>) in the equation. A simpler method
is to use complex variables, as outlined in Notes 10.1 and 10.2. Let

y = yoeio}l

?/o and x0 are now complex numbers. Substituting in the equation of
motion gives

( - c o 2 + icoy + co0
2)x0e

ii0t = (co0
2 + icoy)y0e

io3t

[ coo2 + icoy 1

(coo2 - co2) + ^co7J

We are interested in the ratio of the magnitudes, |£O|/|?/o|.

N = IXQXQ*

12/o | >2/o?/o*

too + (COT)2 1*
(coo2 - co2)2 + (COT)2

(log scale)

10.0 I—

5.0

2.0

1.0

0.5

0.2

0.1
0.5 1.0 1.5 2.0 2.5 3.0
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The graph shows |zo|/|2/o| versus w/w0 for various values of Y / W 0 .
For co/wo less than about 1.5, |ao|/|yo| > 1- The vibration is actually
enhanced, showing that even with damping it is essential to reduce the
resonance frequency below the driving frequency. When co/co0 is greater
than 1.5, |zo|/|2/o| < 1. For these higher frequencies, the vibration isola-
tion is more effective the smaller the damping. However, small damp-
ing increases the danger from vibrations near resonance. Practical air
tables have resonance frequencies of 1 Hz or less.

Many vibration elimination systems use springs instead of an air sus-
pension. However, this does not change the form of the equation of
motion. Often coil springs are used in automobiles to isolate the chassis
from road vibrations. Damping is provided by shock absorbers, a type
of dashpot. The resonance frequency is co0 = 'S/k/M, where k is the
spring constant and M is the mass. If a smooth turnpike ride is the
chief consideration, one wants a massive car with weak damping and
soft springs. Such a car is difficult to control on a bumpy road where
resonance can be excited. The best suspensions are heavily damped
and feel rather stiff. The danger in driving with defective shock absorb-
ers is that the car may be thrown out of control if it is excited at resonance
by bumps in the road.

10.4 Response in Time Versus Response in Frequency

The smaller the damping of a free oscillator, the more slowly its
energy is dissipated. The same oscillator, when driven, becomes
increasingly more frequency selective as the damping is decreased.
As we shall now show, the time dependence of the free oscillator
and the frequency dependence of the driven oscillator are inti-
mately related.

Recall from Eq. (10.16) that the energy of a free oscillator is

E(t) = EtfTT.

The damping time is r = 1/7.
Next, consider the response in frequency of the same oscillator

when it is driven by a force Fo cos ut. From Eq. (10.29) the width
A w s 7 7 \ of the resonance curve is±

w Aw = 7.
Forced oscillator .

The damping time r and the resonance curve width Aw obey

r Aw = 1. 10.31
According to this result it is impossible to design an oscillator with
arbitrary damping time and resonance width; if we choose one,
the other is automatically fixed by Eq. (10.31).
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Equation (10.31) has many implications for the design of mechan-
ical and electrical systems. Any element which is highly frequency
selective will oscillate for a long time if it is accidentally perturbed.
Furthermore, such an element will take a long time to reach the
steady state when a driving force is applied because the effects
of the initial conditions die out only slowly. More generally, Eq.
(10.31) plays a fundamental role in quantum mechanics; it is closely
related to one form of the Heisenberg uncertainty principle.

Note 10.1 Solution of the Equation of Motion for the Undriven Damped Oscillator

THE USE OF COMPLEX VARIABLES

All the equations of motion in this chapter can be solved simply by using
complex variables.1 Here is a summary of the algebra of complex
numbers.

1. Every complex number z can be written in the cartesian form x + iy,
where i2 = — 1. a: is the real part of z, and y is the imaginary part. The
sum of two complex numbers zx = Xi + iyx and z2 = x2 + iy2 is the com-
plex number zx + z2 = (xi + x2) + i(yi + y2). The product of Zi and
z2 is

ziz2 = fa + iyi)(x2 + iy2)

+ ixxy2 + i + i2

If two complex numbers are equal, the real parts and the imaginary parts
are respectively equal.

xi + iyi = x2 + iyi

implies that

Xi = X2

Vi = 2/2.

2. z* = x — iy is the complex conjugate of z = x + iy. The quantity

\z\ = \/zz* is the magnitude of z.

iy)(x - i\

Vy2-
1A simple treatment of the algebra of complex numbers may be found in most
of the calculus texts listed at the end of Chap. 1.
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3. Every complex number z can be written in the polar form reie. r is
a real number, the modulus, and 6 is the argument. To go from car-
tesian to polar form we use De Moivre's theorem

eid = cos 6 + is\n 6.

Hence,

reid _ r c o s $ _|_ ir s j n ^

= x + iy,

from which it follows that

(x,y)

r sin0

r cos 6

X =

y =

and

r =

e =

r cos 0

r sin 0

Vz2 + y*

arctan —

We see that r = \z\.

Complex numbers can be represented graphically. Let the horizontal
axis be the real (x) axis, and the vertical axis be the imaginary (y) axis.
The complex number x + iy is represented by the point (x,y). As the
sketch shows, introduction of the polar form is analogous to the use
of plane polar coordinates.

Here are some examples:

1. Express z = (3 + 4i)/(2 + i) in cartesian form. The method is to
multiply numerator and denominator by the complex conjugate of the
denominator.

z =
3 -1

2 -

3 4

2 -

6 •+

4 -

1 0 •

- 4z

-4i

H i

-8i -

f-2i
•f 5t"

2 - i

2 - i

- 3i - 4r
- 2i - i2

5
2 + i
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2. Express z = 2 + 2i in polar form.

r = \z\

22

6 = arctan - = -
•x 2 4

THE DAMPED OSCILLATOR

We turn now to the equation for the damped oscillator.

x + yx + oo0
2x = 0 1

To cast this into complex form we introduce trre companion equation

y + yy + co0
2*/ = 0. 2

Multiplying Eq. (2) by i and adding it to Eq. (1) yields

z + yz + coo2z = 0. 3

Note that either the real or imaginary part of z is an acceptable solution
for the equation of motion.

Since the coefficients of the derivatives of z are all constants, a natural
choice for the solution of Eq. (3) is

z = zoe
at, 4

where z0 and a are independent of t. With this trial solution Eq. (3)
yields

a2z0e
at + ayzoe

at + coo2z0e
at = 0.

Dividing out the common factor Zoeat, we have

a2 + ay + a>0
2 = 0, 5

which has the solution

coo2

Let us call the two roots ax and a2. We see that our solution can be
written as

where ZA and ZB are constants.
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There are three possible forms of the solution, depending on whether
a is real or complex. We consider these solutions in turn.

Case 1 Light Damping: y2 <<C 4o;0
2

In this case V 7 2 / 4 — co0
2 is imaginary and we can write

a = - - + ijo>0
2 - —

2 \ 4

= - - ±
2

where

4

The solution is

where Z\ and z2 are complex constants. In order to find the real part
of z we write the complex numbers in cartesian form.

x + iy = e~iyl2)t[(xi + iyi) (cos o)\t + i sin o)it)
+ (#2 + iy2)(cos o)\t — i sin oi\t)\

The real part x is

x = e-(7/*>«(£ cos coi* + C sin coiO

or

x = ^4e~^/ 2 ) < cos (cui^ + <t>)i 8

where A and <f> are new arbitrary constants. This is the result quoted
in Eq. (10.9). Incidentally, the imaginary part of z, which is also an
acceptable solution, has exactly the same form.

Case 2 Heavy Damping: Y 2 / 4 > co0
2

In this case, \/y2/4 — coo
2 is real and Eq. (5) has the solution

7 , 7 L
a = + — ^ / l — -

2 2 \
V

Both roots are negative, and we have

z = 3l6-l«il« + z2e-KU. 9

The exponentials are real. The real part of z is

x = Ae~^1 + £<ria2i<. 10
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This solution has no oscillatory behavior; the motion is known as
overdamped.

Case 3 Critical Damping: Y 2 / 4 = co0
2

If Y2/4 = coo2 we have only the single root

7
a =

2

The corresponding solution is

x = Ae-ty'v*. 11
However, this solution is incomplete. Mathematically, the solution of
a second order linear differential equation always involves two arbitrary
constants. Physically, the solution must have two constants to allow
us to specify the initial position and initial velocity of the oscillator. As
described in texts on differential equations, the second solution can be
found by using a "variation of parameters" trial solution.
x = w(0e(-^/2)(/).

Substituting in Eq. (1) and recalling that y = 2co0 for this case, we find
that u(t) must satisfy the equation

u = 0.

Hence,

u = a + bt

and the general solution is

x = Ae-ty'v* + Bte-ty'v*. U

Note 10.2 Solution of the Equation of Motion for the Forced Oscillator

We wish to solve

x + yx

Consider the

y + yy

n
?x = — cos

m
companion

m

ut.

equation

Multiplying Eq. (2) by i and adding to Eq. (1) yields

F
z + yz + o)0

2z = — ei03t.
m

z must vary as ei0}t, so we try

z = zoe
iU)t.
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Inserting this in Eq. (3) gives

rr

( - c o 2 + icoy + (o0
2)zQeioH = — eiu>t

m
or

m coo2 — co2 + icoy

We can put ZQ into cartesian form by multiplying numerator and denom-
inator by the complex conjugate of the denominator.

FQ 1 (coo2 — co2) — icoy

m (co0
2 — co2) + icoy (coo

2 — co2) — icoy

_ Fo (coo2 - co2) - icoy

m (coo2 ~ co2)2 + (C07)2

In polar form, ZQ = Re1*, where

R =

\co2 - coo2/

The complete solution is

z = Re^e1'"',

which has the real part

x = R cos (co£ + <f>)-

The steady-state motion is completely specified by the amplitude R and
the phase angle <j>. Both R and <f> are contained implicitly in the single
complex number z0.

•i

Problems 10.1 Show by direct calculation that (sin2 ((at)) = £, where the time aver-
age is taken over any complete period t\ < t < h + 2TT/CO.

Show also that (sin (co£) cos (cot)) = 0 when the average is over a com-
plete period.

10.2 A 0.3-kg mass is attached to a spring and oscillates at 2 Hz with a
Q of 60. Find the spring constant and damping constant.

10.3 In an undamped free harmonic oscillator the motion is given by
x = A sin co0£. The displacement is maximum exactly midway between
the zero crossings.

- Damped

s / Undamped
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In a damped oscillator the motion is no longer sinusoidal, and the
maximum is advanced before the midpoint of the zero crossings. Show
that the maximum is advanced by a phase angle 0 given approximately
by

/
V

Impulse

2Q

where we assume that Q is large.

10.4 The logarithmic decrement 8 is defined to be the natural logarithm
of the ratio of successive maximum displacements (in the same direc-
tion) of a free damped oscillator. Show that 8 = T/Q.

Find the spring constant k and damping constant b of a damped oscil-
lator having a mass of 5 kg, frequency of oscillation 0.5 Hz, and logarithmic
decrement 0.02.

10.5 If the damping constant of a free oscillator is given by y = 2co0,
the system is said to be critically damped. Show by direct substitution
that in this case the motion is given by

x = (A + 50e"(7/2)',

where A and B are constants.
A critically damped oscillator is at rest at equilibrium. At t = 0 it is

given a blow of total impulse 7. Sketch the motion, and find the time
at which the velocity starts to decrease.

10.6 a. A mass of 10 kg falls 50 cm onto the platform of a spring scale,
and sticks. The platform eventually comes to rest 10 cm below its initial
position. The mass of the platform is 2 kg. Find the spring constant.

b. It is desired to put in a damping system so that the scale comes to
rest in minimum time without overshoot. This means that the scale
must be critically damped (see Note 10.1). Find the necessary damping
constant and the equation for the motion of the platform after the
mass hits.

10.7 Find the driving frequency for which the velocity of a forced damped
oscillator is exactly in phase with the driving force.

10.8 The pendulum of a grandfather's clock activates an escapement
mechanism every time it passes through the vertical. The escapement
is under tension (provided by a hanging weight) and gives the pendulum
a small impulse a distance I from the pivot. The energy transferred
by this impulse compensates for the energy dissipated by friction, so
that the pendulum swings with a constant amplitude.

a. What is the impulse needed to sustain the motion of a pendulum
of length L and mass m, with an amplitude of swing 6Q and quality fac-
tor Q?

b. Why is it desirable for the pendulum to engage the escapement
as it passes vertical rather than at some other point of the cycle?
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^

r. r

10.9 Show that for a lightly damped forced oscillator

average energy stored in the oscillator ^ coQ _

average energy dissipated per radian y

10.10 A small cuckoo clock has a pendulum 25 cm long with a mass of
10 g and a period of 1 s. The clock is powered by a 200-g weight which
falls 2 m between the daily windings. The amplitude of the swing is 0.2
rad. What is the Q of the clock? How long would the clock run if it
were powered by a battery with 1 J capacity?

10.11 Two particles, each of mass M, are hung between three identical
springs. Each spring is massless and has spring constant k. Neglect
gravity. The masses are connected as shown to a dashpot of negligible
mass.

The dashpot exerts a force bv, where v is the relative velocity of its
two ends. The force opposes the motion. Let X\ and x2 be the displace-
ments of the two masses from equilibrium.

a. Find the equation of motion for each mass.

b. Show that the equations of motion can be solved in terms of the
new dependent variables yi = X\ + x2 and y2 = X\ — x2.

c. Show that if the masses are initially at rest and mass 1 is given an
initial velocity v0, the motion of the masses after a sufficiently long time is

X\ = X2

= — sin ut.
2co

Evaluate co.

10.12 The motion of a damped oscillator driven by an applied force
Fo cos at is given by xa(t) = A cos (coZ + <£), where A and <f> are given
by Eq. (10.25). Consider an oscillator which is released from rest at
t = 0. Its motion must satisfy x(0) = 0, v(0) = 0, but after a very long
time, we expect that x(t) = xa(t). To satisfy these conditions we can take
as the solution

x(t) = xa(t) + Xb(t),

where Xb(t) is the solution to the equation motion of the free damped
oscillator, Eq. (10.8).

a. Show that if xa(t) satisfies the equation of motion for the forced
damped oscillator, then so does x(t) = xa(t) + Xb(t), where xb(t) satisfies
the equation of motion of the free damped oscillator, Eq. (10.25).

b. Choose the arbitrary constants in Xb(t) so that x(t) satisfies the
initial conditions. [xb(t) is given by Eq. (10.9). Note that A and <f> here
are arbitrary.]

c. Sketch the resulting motion for the case where the oscillator is
driven at resonance.
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11.1 The Need for a New Mode of Thought

In some ways the structure of physics resembles a mansion whose
outward form is apparent to the casual visitor but whose inner life
—the customs and rituals which give a special outlook and kinship
to its occupants—require time and effort to comprehend. Indeed,
initiation into this special knowledge is the goal of our present
endeavor. In the first ten chapters we introduced and applied
the fundamental laws of classical mechanics; hopefully you now
feel familiar with these laws and have come to appreciate their
beauty, their essential simplicity, and their power.

Unfortunately, in order to present dynamics in a concise and
tidy form, we have generally sidestepped discussion of how physics
actually grew. In Chaps. 11 through 14 we are going to discuss
one of the great achievements of modern physics, the special
theory of relativity. Rather than present the theory as a com-
pleted structure—a simple set of postulates with the rules for
their application—we shall depart from our previous style and
look into the background of the theory and its rationale.

If the structure of physics is a mansion, it is a mansion of ancient
origin. It is founded on the remains of prehistoric hovels where
man first kept track of the moon and tried to understand the sim-
ple patterns of nature. Traces of antiquity lie hidden in the site:
Phoenician and Egyptian, Babylonian, and, of course, Greek.
Compass and straightedge lie scattered among lodestone and
amber, artifacts of astrologer and alchemist. The mansion is
built on the debris of false starts and painful struggles to under-
stand nature honestly. None of this is visible, however, and we
take the present structure much for granted. The outer shell
was built in the seventeenth century by Kepler, Galileo, Newton,
and others, such as Huygens, Hooke, Leibniz, Bernoulli, and Boyle.
The major architects have one characteristic in common: while
extending the external dimensions of the mansion by applying
physics to new areas, they also deepened its foundations by
advancing our knowledge of the fundamental laws. The greatest
of these figures is Newton, who revealed the laws of dynamics and
of gravity, cornerstones of modern science. At the same time
he vigorously applied physics to the natural world. Newton exe-
cuted meticulous experiments in heat flow, optics, and the motion
of bodies under viscous forces; he investigated the shape of the
moon, the tides along the coast of England, and how to build
bridges.

The momentum generated by Newton's discoveries gave physics
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an impetus which is still very much with us. The eighteenth and
nineteenth centuries saw a flowering of science as physicists such
as Euler, Lagrange, Laplace, Faraday, and Maxwell extended our
knowledge of the physical world. However,* their efforts were
directed at upward extension of the mansion; Newton's account
of the fundamental laws of physics was so overwhelming, and so
successful, that not until the last quarter of the nineteenth century
was there a serious attempt to investigate the foundations.

It was the German physicist Ernst Mach who first successfully
challenged newtonian thought. Although Mach's work left new-
tonian physics more or less intact, his thinking was crucial in the
revolution shortly to come. In 1883 Mach published his text "The
Science of Mechanics," which incorporated a critique of newtonian
physics, the first incisive criticism of Newton's theory of dynamics.
In addition to presenting a lucid account of newtonian mechanics,
the text incorporates several significant contributions to the funda-
mentals of mechanics. Mach clarified newtonian dynamics by
carefully analyzing Newton's explanation of the dynamical laws,
taking care to distinguish between definitions, derived results, and
statements of physical law. Mach's approach is now widely
accepted; our discussion of Newton's laws in Chap. 2 is very much
in Mach's spirit.

"The Science of Mechanics" raised the question of the distinc-
tion between absolute and relative motion. Mach pointed out
Newton's ambivalence on this subject, although he went on to
show that the question was irrelevant to the application of new-
tonian dynamics. In the process he dwelt on the problem of
inertia and enunciated the principle that now bears his name:
inertia is not an intrinsic property of matter or space but depends
on the existence of all matter in the universe. We encountered
Mach's principle in our discussion of fictitious forces in Chap. 8,
but we shall not dwell on it here for it turns out that the problem
of inertia was not the crucial difficulty with newtonian mechanics.

The fundamental weakness in newtonian dynamics, as Mach
pointed out, centers on Newton's conception of space and time.
In a preface to his dynamical theory, Newton avowed that he
would forgo abstract speculation and deal only with observable
facts. Although such a point of view is now commonplace, at the
time it represented a tremendous intellectual leap. Before New-
ton, the business of natural philosophy was to explain the reasons
for things, to find a rational account for the workings of nature,
rather than to describe natural phenomena quantitatively. New-
ton essentially reversed the priorities. Against the criticism that
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his theory of universal gravitation merely described gravity with-
out accounting for its origin, Newton replied "I do not make
hypotheses."

Unfortunately, Newton was not completely faithful to his resolve
to avoid abstract speculation and to deal only with demonstrable
facts. In particular, consider the following description of time
that appears in the "Principia." (The excerpt is condensed.)

Absolute, true and mathematical time, of itself and by its own true nature,
flows uniformly on, without regard to anything external.

Relative, apparent and common time is some sensible and external
measure of absolute time estimated by the motions of bodies, whether
accurate or inequable, and is commonly employed in place of true
time; as an hour, a day, a month, a year.

Mach comments that "it would appear as though Newton in the
remarks cited here still stood under the influence of medieval
philosophy, as though he had grown unfaithful to his resolve to
investigate only actual facts." Mach goes on to point out that
since time is necessarily measured by the repetitive motion of
some physical system, for instance the pendulum of a clock or
the revolution of the earth about the sun, then the properties of
time must be connected with the laws which describe the motions
of physical systems. Simply put, Newton's idea of time without
clocks is metaphysical; to understand the properties of time we
must observe the properties of clocks. A simple idea? Yes,
indeed, were it not for the fact that the idea of absolute time is
so natural that the eventual consequences of Mach's position,
the relativistic description of time, still come as something of a
shock to the student of science.

There are similar weaknesses in the newtonian view of space.
Mach argued that since position in space is determined with mea-
suring rods, the properties of space can be understood only by
investigating the properties of meter sticks. We must look to
nature to understand space, not to platonic ideals.

Mach's special contribution was to examine the most elemental
aspects of newtonian thought, to look critically at matters which
seem too simple to discuss, and to insist that we turn to experience
to understand the properties of nature rather than to rely on
abstractions of the mind. From this point of view, Newton's
assumptions about space and time must be regarded merely as
postulates. Classical mechanics follows from these postulates,
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but other assumptions are possible and from them different laws
of dynamics could follow.

Mach's critique had little immediate effect, but its influence
was eventually profound. In particular, the youthful Einstein,
while a student at the Polytechnic Institute in Zurich in the period
1897-1900, was much attracted by Mach's ideas on the founda-
tions of newtonian physics and by Mach's insistence that physical
concepts be defined in terms of observables. However, the
immediate cause for the overthrow of newtonian physics was not
Mach's criticisms of newtonian thought. The difficulties lay with
Maxwell's electromagnetic theory, the crowning achievement of
classical physics. Traditionally, the problem is presented in terms
of a single crucial experiment that decisively condemned classical
physics, the Michelson-Morley experiment, and most treatments
of special relativity take this experiment as the point of departure.
We shall follow this tradition, but we should point out that history
is not that simple. In the first place, Albert A. Michelson, who
conceived and executed the experiment, never regarded it as
crucial. Michelson viewed the experiment as a flop for not giving
the expected result, a view he maintained long after its full sig-
nificance became known. Furthermore, it now appears that the
Michelson-Morley experiment played little, if any, role in Einstein's
thinking. In fact, there is good reason to believe that Einstein
knew nothing of the experiment until after he had published his
theory of relativity in 1906. Nevertheless, the Michelson-Morley
experiment so clearly dramatizes the essential dilemma of electro-
magnetic theory that we shall bow to tradition and take it as our
starting point.

11.2 The Michelson-Morley Experiment

The problem to which Michelson devoted himself was that of
determining the effect of the earth's motion on the velocity of
light. Briefly, Maxwell's electromagnetic theory (1861) predicted
that electromagnetic disturbances in empty space would propa-
gate at 3 X 108 m/s—the speed of light. The simplest distur-
bance is a periodic wave, and the evidence was overwhelming that
light consisted of electromagnetic waves. However, there were
conceptual difficulties.

The only waves previously known to physics were mechanical
waves propagating in solids, liquids, and gases. A sound wave
in air, for example, consists of alternate regions of higher and
lower pressure propagating with a speed of 330 m/s, somewhat
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less than the speed of molecular motion. The speed of mechan-
ical waves in metals is higher, typically 5,000 m/s, and increases
with the strength of the "spring forces" between neighboring
atoms.

Electromagnetic wave propagation seemed to be a very different
sort of thing. The ether, the medium which supposedly supported
the electromagnetic disturbance, had to be immensely rigid to give
a speed of 3 X 108 m/s. At the same time it had to be insub-
stantial enough not to interfere with the motion of the planets.
Maxwell's theory itself made no essential reference to the ether,
but Maxwell and his contemporaries were unable to accept the
idea of waves propagating in empty space.

The speed of a sound wave vs depends on the properties of the
medium. If we observe a sound wave from a coordinate system
moving relative to the medium, the speed of sound will appear to
be greater or less than v8, depending on whether we move in the
direction of propagation or against it. Similarly, Maxwell pointed
out that the speed of the earth as it circled the sun, 3 X 104 m/s,
should change the apparent speed of light.

Suppose that light makes a round trip ABA between two
points A and B separated by distance I. The apparatus is moving
through the ether to the right, as shown in the upper drawing.
Relative to the apparatus, the ether is moving to the left, as shown
in the second drawing. The velocity of light relative to the appa-
ratus is c + v to the left, and c — v to the right.

The transit time from A to B \s h = l/(c — v), and from B to
A it is U = l/(c + v). If the apparatus were at rest, t\ and t2

would have the value t0 = l/c. The effect of the earth's motion
is to delay the return of the light signal by

At = - 2t0

I

c — v C + V C

c \1 - v/c + 1 + v/c I

= 2 c \1 - v2/c2 ~ /
lv

2
cc2

For the earth in orbit v/c = 10~4, and if we take I to be typical of
a laboratory apparatus, I = 1 m, then At = 2 X 1/(3 X 108) X
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Light
source

M,

f Arm 2

Arm 1

Telescope

Observer

M,

10~8 ~ 7 X 10~17 s, an interval much too small to be measured
directly. Fortunately, Michelson was not discouraged. In 1881
he came up with the following solution.

Rather than measure the time of transit of one light beam,
Michelson observed the difference between the transit times of
two beams. His device is sketched at the left. The light from
the source is split into two beams by a thinly silvered mirror, A.
Half the light passes through mirror A to mirror Mi , where it is
reflected back to mirror A and then to the observer. The other
half of the light from the source is diverted up the second arm and
strikes mirror M2, which reflects it to the observer. If the two
arms are identical, the light waves recombine at mirror A just as
if they had never separated: the observer sees an illuminated
field of view. The situation is drastically altered if either beam
suffers a delay. Suppose, for instance, that beam 1 is delayed
by exactly one-half cycle of oscillation. The waves arrive in oppo-
site phase and exactly cancel each other: the observer's field is
dark.

Field strength

r\
\ 7

Wave 1

Wave 2

Resultant

Field strength

Time Time

In phase

(a)

Out of phase

(b)

The two cases are shown in the sketches above. The vertical
displacement corresponds to the strength of the electric field of
light at the observer's eye. The fields of the two beams add
vectorially. For visible light the period of the wave is typically
10"15 s, too fast for our eyes to follow. Rather, our eyes respond
to the average power of the wave which is proportional to the
square of the resultant field. Thus, beams in phase, sketch (a),
give steady bright illumination, and beams out of phase, sketch
(b), give darkness.



448 THE SPECIAL THEORY OF RELATIVITY

Locus of
instantaneous

wave crest

Wave 2
Wave 1

Usually one of the mirrors is slightly tilted. This produces a
gradual time delay across the returning wavefront, as shown in
the first sketch, and the two interfering waves go in and out of
phase across the field of view. The observer sees alternate light
and dark bands, as in the second sketch. If the length of either
arm is changed, the fringe pattern shifts; a change in path of one
wavelength shifts the pattern by one fringe. Since the light
traverses each arm twice, once in each direction, a change in the
length of either arm by one-half wavelength produces a shift of
one fringe. With care it is possible to measure a small fraction
of a fringe shift; one can readily observe a path change of one-
hundredth wavelength, approximately 10~8 m. (Michelson also
used his interferometer to measure the length of the standard
meter bar; he essentially created the field of high precision
measurement.)

Initial position of M

i
Final position of M]

Suppose that the interferometer is oriented so that one axis
lies along the direction of motion of the earth, as shown. The
time for the wave to travel from mirror A to mirror Mi and back
is

I I

c — v c + v

J( 1 I 1 \
c \1 - v/c 1 + v/cj

.1 - v2/

where I is the length of the arm. There is also a time delay along
arm 2, but this is a trifle more subtle to calculate. (Michelson
overlooked it in the first report of his experiment in 1882.) For
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/ /! \

the beam to return to its initial point on the thinly silvered mirror,
it must traverse the angular path shown at left. Let r be the
time it takes the wavefront to go from mirror A to mirror M 2 .
The distance actually traversed is V = (I2 + v2r2)h and, since
V = CT we have

(I2 + v2r2f

or

2 _ I2 v2

c2 c2

It follows that

1I
T = ~

c V l - v2/c2

The time for the wave to travel from mirror A to mirror M2 and
back is

T2 = IT

- v2/c2

( +
c\ ^ 2c2

The difference between the travel times of the beams is

AT = Ti - T2

_ Iv2

c c2

The delay AT shifts the fringe pattern from where it would be
if the earth were at rest. However, there is a major problem:
the fringe scale has no "zero," since the arms cannot be made
identical in length to the needed accuracy. Michelson hit upon
the idea of watching the fringes as the apparatus is rotated by
90°. The rotation effectively interchanges arms 1 and 2. The
change in the delay between the two positions is 2AT, and the
corresponding fringe shift is readily calculated. If X is the wave-
length of the illuminating light, a time delay of X/c will shift the
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pattern by one fringe. Thus, the time delay 2AT will shift the
pattern N fringes, where

(X/c)

X c2

If the arms have unequal lengths, h and l2, this result still holds,
provided that we replace 21 by h + l2.

In Michelson's first apparatus, the arm length was 1.2 m, or,
as he put it, 2 X 106 wavelengths of yellow (sodium) light. Since
v/c = 10~4, we expect

N = 2(2 X 106)(10"4)2

= 0.04.

Although this is not a large shift, Michelson had adequate reso-
lution to see it. To his disappointment, he found no measurable
shift in the fringe pattern. A much more refined experiment,
executed with E. W. Morley, in 1887, used multiple reflections to
increase the expected shift to 0.4 fringe. Although a shift as
small as 0.01 fringe could have been detected, no effect was seen.
The experiment has been repeated many times since, but always
with negative results. It appears that we are unable to detect
our motion through the ether.

11.3 The Postulates of Special Relativity

The elusive nature of the ether presented physics with a trouble-
some enigma. Maxwell attempted to devise a mechanical model
of the ether, but as he continued to develop his theory of light, the
ether played a less and less important role, until finally it was alto-
gether absent. The ether vanished like the Cheshire Cat, leaving
only a smile behind. After the Michelson-Morley experiment, even
the smile had vanished. Numerous attempts to explain the null
results of the Michelson-Morley experiment introduced such com-
plexity as to threaten the foundations of electromagnetic theory.
The most successful attempt was the hypothesis suggested inde-
pendently by FitzGerald and by Lorentz that motion of the earth
through the ether caused a shortening of one arm of the Michel-
son interferometer by exactly the amount required to eliminate
the fringe shift. However, their speculations were based on an
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assumed model of atomic forces, and even though they arrived
at some of the formulas shortly to be obtained by Einstein, their
reasoning was far less general. Other theories which involved
such artifacts as drag of the ether by the earth were even less
productive.

The Universal Velocity

It is an indication of Einstein's genius that the troublesome prob-
lem of the ether pointed the way not to complexity and elaboration
but to a simplification that unified the basic concepts of physics.
Einstein viewed the difficulty with the ether not as stemming from
a fault of electromagnetic theory but as arising from an error in
basic dynamical principles. He argued that since the velocity of
light predicted by electromagnetic theory, c, involves no reference
to a medium, c must be a universal constant, the same for all
observers. Thus, if we measure the speed of light from a source,
the result will always be c, independent of our motion. This is in
marked contrast to the case of sound waves, for example, where
the observed speed depends on motion of the observer with
respect to the medium. The ideas of a universal velocity was
indeed a bold hypothesis, contrary to all previous experience and,
for many of Einstein's contemporaries, defying common sense.
But common sense is often a poor guide. Einstein once remarked
that common sense consists of all the prejudices one learns before
the age of eighteen.

The Principle of Relativity

The special theory of relativity involves one additional postulate—
the assertion that the laws of physics have the same form with
respect to all inertial systems. This principle, known as the prin-
ciple of relativity, was not novel; Galileo is credited with first point-
ing out that there is no way to determine whether one is moving
uniformly or is at rest, and Newton, although troubled by this
point, gave it a rigorous expression in his dynamical laws in which
acceleration, not velocity, is paramount. The principle of relativity
played only a minor role in the development of classical mechan-
ics; Einstein elevated it to a keystone of dynamics. He extended
the principle to include not only the laws of mechanics but also
the laws of electromagnetic interaction and, by supposition, all the
laws of physics. Furthermore, in his hands the principle of rela-
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tivity became an important working principle in discovering the
correct form of physical laws. We can only surmise the sources
of his inspiration, but they must have included the following con-
sideration. If the velocity of light were not a universal constant,
that is, if the ether could be detected, then the principle of rela-
tivity would fail; a special inertial frame would be singled out, the
one at rest in the ether. However, the form of Maxwell's equa-
tions, as well as the failure of any experiment to detect motion
through the ether, suggests that the speed of light is constant,
independent of the motion of the source. Our inability to detect
absolute motion, either with light or with newtonian forces, implies
that absolute motion has no role in physics.

Whereas most physicists regarded the absence of the ether as
a paradox, Einstein saw that its absence preserved the simplicity
of the principle of relativity. His view was essentially conserva-
tive; he insisted on preserving the principle of relativity which the
ether would destroy. Apparently the urge toward simplicity was
fundamental to his personality.1 The special theory of relativity
was the simplest way to preserve the unity of classical physics.
In fact, as we shall see in the closing chapter, special relativity
actually simplifies newtonian thought by combining space and
time in a natural fashion from which the various conservation laws
follow as a single entity.

The Postulates of Special Relativity

To summarize, the postulates of special relativity are:

The laws of physics have the same form in all inertial systems.

The velocity of light in empty space is a universal constant, the same

for all observers.

The mathematical expression of the special theory of relativity
is embodied in the Lorentz transformations—a simple prescrip-
tion for relating events in different inertial systetns. Contrary to
the mystique, the mathematics of relativity is quite simple: ele-
mentary algebra will suffice. The reasoning is also simple, but
it has a deceptive simplicity. We start by looking once more at
the Galilean transformations.

1 Einstein had much in common with Newton. In the second book of his "Prin-
cipia," Newton states his rules of scientific reasoning. Rule 1 is: "We are to
admit no more causes of natural things than such as are both true and suffi-
cient to explain their appearances. . . . Nature is pleased with simplicity. . ."
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11.4 The Galilean Transformations

Let us review for a moment the newtonian way of viewing an event
in different coordinate systems. Consider an inertial system x,
y, z, in which we are at rest, and a second inertial system xf, y\
z', which is translating uniformly in the +x direction with velocity
v. For convenience, we take the origins to coincide at t = 0, and
take the axes to be parallel.

If a particular point in space has coordinates r = (x,y,z) in our
"rest" system, the corresponding coordinates in the moving sys-
tem are r' = (x',y',z'). These are related by

r' = r - R,

*,.*' where

R = vt.

Since v is in the x direction, we have

x' = x — v t

y' = y

z' = z
tf = L

11.1

The last equation is listed merely for completeness. It follows
from the newtonian idea of an "absolute" time, and it is so taken
for granted that it is generally omitted in discussions of classical
physics.

Equations (11.1) are known as the Galilean transformations.
Since the laws of newtonian mechanics hold in all inertial systems,
they are unaffected by these transformations. The classical prin-
ciple of relativity asserts that the laws of mechanics are unchanged
by the Galilean transformations. The following example illustrates
the meaning of this statement.

Example 11.1 The Galilean Transformations

Consider how we might discover the law of force between two isolated
bodies from observations of their motion. For example, the problem
might be to discover the law of gravitation from data on the elliptical
orbit of one of Jupiter's moons. If mx and m2 are the masses of the
moon and of Jupiter, respectively, and r^ and r2 are their positions rela-
tive to an astronomer on the earth, we have

m/ri = F(r)

m2f2 = -
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r = r o - r , =

where we assume that F, the force between the bodies, depends only
on their separation r = |rL — r2|. (Including the effect of the sun makes
the analysis more cumbersome without changing the conclusions.)

From our data on ti(t) we can evaluate n, which yields the value of
F, (or F/mi, to be more precise). In principle, this is the procedure
Newton followed in discovering the law of universal gravitation. Suppose
that the data show F(r) = —Gmim2r/r

2.
Now let us consider the problem from the point of view of an astron-

omer in a spacecraft observatory which is flying by the earth. According
to the principle of relativity he must obtain the same force law. The situ-
ation is represented in the drawing, x, y is the earthbound system,
x't y' is the spacecraft system, and v is the relative velocity.

In the x', yr system the astronomer concludes that the force on m,\
is

F'(r') = m{r[.

However,

ri = r{ + v*

ri = i[ + v

Hi = rj.

Hence,

F'(r') =

= F(r).

Since r' = r, F'(r') = F'(r). But we have just shown that F'(r') = F(r).
Hence,

F'(r) = F(r)

The law of force is identical to the one found on earth. This is what
we mean when we say that the two inertial systems are equivalent. If
the form of the law, or the value of G, were different in the two systems,
we could make a judgment about the speed of a coordinate system by
investigating the law of gravitation in that system. The systems would
not be equivalent.

Example 11.1 is almost trivial, since the force depends on the

separation of the two particles, a quantity which is unchanged

(invariant) underthe Galilean transformations. In newtonian phys-

ics, all forces are due to interactions between particles, interac-

tions which depend on the relative coordinates of the particles.

Consequently they are invariant under the Galilean transformations.
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What happens to the equation for a light signal under the
Galilean transformations? The following example shows the diffi-
culty that arises.

\y

> *

..—-r

Example 11.2 A Light Pulse as Described by the Galilean Transformations

At t = 0 a pulse of light is emitted isotropically in the x, y system. It
travels outward with velocity c. The equation for the wavefront along
the x axis is

x = ct.

In the x'', y' system, the equation for the wavefront along the x' axis is

x' = x — vt

= (c - v)t,

x,x

Location of pulse w h e r e v j s t h e r e | a t i v e velocity of the two systems.

The x1 velocity of the pulse in the x', y' system is

— = c — v.
dt

But this is contrary to the postulate that the speed of light is a universal
constant c for all observers. Clearly, the Galilean transformations are
inadequate.

I ,

11.5 The Lorentz Transformations

Since the Galilean transformations do not satisfy the postulate
that the speed of light is a universal constant, Einstein proposed
an alternate prescription for describing the same event in different
inertial systems. Let us refer once more to our standard systems,
the rest system, x, y, z, t and the system xf, y', z', t' which moves
with velocity v along the positive x axis. The origins coincide at
t = t' = 0. We take the most general transformation relating the
coordinates of a given event in the two systems to be of the form

x' = Ax + Bt

V' = V
z' = z
t' = Cx + Dt.

11.2a

11.2&

11.2c

11.2d

The transformations are linear, for otherwise there would not be
a simple one-to-one relation between events in the different sys-
tems. For instance, a nonlinear transformation would predict
acceleration in one system even if the velocity were constant in



TABLE 11.1

EVENT

COOR- COOR-
DINATES DINATES
(x,y,t) (x',y',tf) TRANSFORMATION LAW RESULT

Observer in (x,y) sees origin
of (x',y') move along x axis
with velocity v. x = vt x' = 0

Observer in (x',yf) sees origin
of (x,y) move along xf axis
with velocity —v. x = 0 x1 — —vt'

A light pulse is sent out from

origin along x axis at t = 0.

Its location is given by: x = ct x' = ct'

A light pulse is emitted along
the y axis in (x,y) at t = 0.
In (z',?/') the pulse has com-
ponents along the x' and y'
axes. The velocity of the
pulse is c in both systems. x = 0 a;'2 + y'2

Its coordinates are given by: y = ct = cH'2

x1 = Ax + Bt 11.2a

0 =

x' =
t' =

4(0

x' =
tf' =
4(c*

x' =

*' =

Avt +

A(x
Cx-\-

- vt)

A(x •

Cx +
- vt)

A(x -
y

Bt

- vt)
- Dt

= -v(Q +

- vt)
At
= c(Cct -i

- vt)

A(-vx/c2 + 0

11.2a
11.2d

Dt)

11.2a
11.2d

-At)

11.2a
11.2b
11.2d

B =

D =

C =

-Av

A

A 41
JLV

A2(0 - itf)2 + (ct)2

I

mo

o

TO

m

VT^
t In general, A = + 1 / V 1 — v2/c2. We choose the positive root; otherwise, in the limit v = 0 w e would find x' = — x rather
than x' = x as we require.
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the other, clearly an unacceptable property for a transformation
between inertial systems. We have assumed that the y' and z'
axes are left unchanged by the transformation for reasons of
symmetry, which we shall discuss later.

Equations (11.2) contain four unknown constants. To evaluate
these we consider four cases in which we know a priori how an
event appears in the two systems. This is carried out in Table
11.1.

Inserting the results of Table 11.1 into Eq. (11.2) gives

x =
V l - v2/c2

(x - vt)

y = y

z1 = z
11.3

It is a straightforward matter to solve these equations alge-
braically for x, y, z, t in terms of x', yf, z', i!'. Alternatively, we
can simply interchange the labels and reverse the sign of v,
because the only difference between the systems is the direction
of the relative velocity. The result is

(a)

(b)

(c)

X =
V l - v2/c2

{xf + vtr)

11.4
z = zr

t =
Vi

J /,, , vjf
— V2/C2 \ c ,

Equations (11.3) and (11.4) are the Lorentz transformations, the
prescription for relating the coordinates of an event in different
inertial systems so as to satisfy the postulates of special relativity.
In the following chapters we shall explore their consequences.
We conclude the present discussion by explaining the argument
for assuming y = y', z = z'.

Consider a section of the y and y' axes as shown in figure (a).
The y' axis is moving to the right with velocity v.

If we look at the systems from behind the paper, the situation
appears as in sketch (b).
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Since only relative motion is important, Figure (6) is equivalent
to (c). However, (c) is identical to (a) except that y' and y are
interchanged. We conclude that the y and yr axes are indis-
tinguishable and y = y'. By a similar argument z = z'.

Problems

\\ ^ ^\\ ^

/
/ /

vy / /

^ " \ //'

/

/
^^

s y
\

11.1 The Michelson-Morley experiment was carried out at the Case
School of Applied Science (now Case-Western Reserve University) in
1887. The apparatus was a refined version of the interferometer used
by Michelson in his initial search in Berlin during 1881. The inter-
ferometer was mounted on a granite slab 5 ft square and 14 in thick
resting on a float riding in a mercury-filled trough. The effective length
of the interferometer arms was lengthened to 11 m by the use of mirrors.
The light source was the yellow line of sodium, X = 590 X 10~9 m. Michel-
son and Morley found no systematic shift of fringe with direction, although
they could have detected a shift as small as one-hundredth fringe.

How does the upper limit to the earth's velocity through the ether
set by this experiment compare with the earth's orbital velocity around
the sun, 30 km/s? See drawing on page 458.
11.2 If the two arms of a Michelson interferometer have lengths l\ and
l2, show that the fringe shift when the interferometer is rotated by 90°
with respect to the velocity v through the ether is

N h + h v2

where X is the wavelength of the light.

11.3 The Irish physicist G. F. FitzGerald and the Dutch physicist H. A.
Lorentz independently tried to explain the null result of the Michelson-
Morley experiment by the following hypothesis: motion of a body through
the ether sets up a strain which causes the body to contract along the
line of motion by the factor 1 — iv2/c2. Show that this hypothesis
accounts for the absence of a fringe shift in the Michelson-Morley exper-
iment. (The hypothesis was disproved in 1932 by R. J. Kennedy and
E. M. Thorndike, who repeated the Michelson-Morley experiment with
an interferometer having arms of different lengths.)

11.4 The Michelson-Morley experiment is known as a second order
experiment because the observed effect depends on (v/c)2. Consider
the following first order experiment.

At time t = 0, observer A sends a signal to observer B a distance I
away. B records the arrival time. Assume that the system is moving
through the ether with speed v in the direction shown. Suppose that
the laboratory is then rotated 180° with respect to the velocity, reversing
the positions of A and B. At time t = T, A sends a second signal to B.
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a. Show that the interval B observes between the arrival of the signals
is T + AT, where

Flow out

M I
— I -

* Flow in

c c

to order (v/c)3.

b. Assume that the experiment is done between a clock on the ground
and one in a satellite overhead. For an orbit with a 24-h period, I = 5.6Ret

where Re is the earth's radius. Present atomic clocks approach a sta-
bility of 1 part in 1014. What is the smallest value of v that this experiment
could detect using such clocks?

11.5 In 1851 H. L. Fizeau investigated the velocity of light through a
moving medium using the interferometer shown. Light of wavelength
A from a source S is split into two beams by the mirror M. The beams
travel around the interferometer in opposite directions and are com-
bined at the telescope of the observer, 0, who sees a fringe pattern.
Two arms of the interferometer pass through water-filled tubes of length
I with flat glass end plates. The water runs through the tubes, so that
one of the light beams travels downstream while the other goes upstream.
The velocity of light in water at rest is c/n, where n is the refractive index
of water. If we assume that the velocity of the water is added to the
velocity of light in the downstream direction, and subtracted in the
upstream direction, show that the fringe shift which occurs when the
water flows with velocity v is

AT = 4n2 — v.
\c

(The actual fringe shift measured by Fizeau was

AT

N = \c
fv.

where / = 1 — 1/n2. / , known as the Fresnel drag coefficient, was
postulated in 1818, but it was not satisfactorily explained until the advent
of relativity. It is derived in the next chapter.)
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12.1 Introduction

The special theory of relativity demands that we examine and
modify the familiar results of newtonian physics. We must start
by reconsidering kinematics, the most elementary aspect of
mechanics, a topic apparently so simple that we gave little thought
to its foundations in our earlier discussion. As we pointed out
in the last chapter, classical kinematics obeys the Galilean trans-
formations. We must now develop the kinematics appropriate
to the Lorentz transformations.

The Lorentz transformations are simplified by introducing

1
7 = /

V I - v2/c2

Since (v/c)2 < 1, y is greater than or equal to one. The Lorentz
transformations, Eqs. (11.3) and (11.4), then take the form
x' = y(x - vt) x = y(x' + vtr)

y' = y y = y'

zf = z z = z' 12.1

I' =

It is important to understand clearly the function of the Lorentz
transformations, for the lore of relativity is filled with so-called
paradoxes (generally simple mistakes) in which the Lorentz trans-
formations are misapplied and lead to contradictory results. The
Lorentz transformations relate the coordinates of a single event in
one inertial system to the coordinates of the same event in a second
inertial system. Examples of single events are:

A light pulse leaves the point z = 3 m, y = 7 m, z = —4m at
t = 5s.
The origin of the x', y', z' system passes the origin of the x, y, z
system at time t.
One end of a stick lies at the point x', y', z', at time t'.
A bearer of evil tidings bursts into the king's chamber at midnight.

Single events are characterized by a set of definite values for the
coordinates x, y, z, t More complicated events can be described
by a collection of single events. For example, consider a stick
lying along the y axis. The location of the stick is defined by
two single events—the coordinates of its end points at a particular
time.

Before setting out to apply the Lorentz transformations, we
should consider carefully how to determine the coordinates of an
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event. Often we speak of "an observer"; for instance, "an
observer in the x'f y' system sees a flash of light at x' = 1, y' = 3,
tf = 0." This is a handy way to describe observations, but there
are conceptual difficulties with the idea of a single observer.
Consider an observer who notes that a pulse of light leaves the
origin at t = 0, and finds that at time tA the pulse is at xA = CIA.
To make such an observation he would have to move to position
xA before the light arrived there—he would have to move faster
than light. As we shall see, this is impossible. However, it is
nevertheless possible to record the coordinates of any series of
events we please by assuming that we have many observers
stationed throughout space. Each one has his own clock, and
each is assigned to a specific location, x, y, z. Every time an
event occurs at a particular location, the local observer notes the
time. Later, all the observers send reports to a central office
which prepares a complete record of the times and locations of
all events in the system. When we talk of "an observer," we
mean someone who has, at least in principle, a copy of this record.

In order for the procedure to work it is essential that all the
clocks run at the same rate and that they be synchronized. There
is a subtle point here, for synchronized clocks will not appear to
agree unless they are at the same location. For example, sup-
pose that we use a powerful telescope to look at a clock on the
moon. Since it takes light approximately 1 s to travel from the
moon to the earth, a moon clock should indicate 1 s before noon
when an earth clock indicates noon, provided that the two clocks
are properly synchronized. Similarly, the earth clock should
appear to be 1 s late to an observer on the moon. By extension,
this procedure can be used to synchronize all the clocks in a par-
ticular inertial system.

12.2 Simultaneity and the Order of Events

We have an intuitive idea of what is meant when we say that two
events are simultaneous. With respect to a given coordinate
system, two events are simultaneous if their time coordinates have
the same value. However, as the following example shows, events
which are simultaneous in one coordinate system are not neces-
sarily simultaneous in a second coordinate system.

Example 12.1 Simultaneity

Consider a railwayman standing at the middle of a freight car of length
2L. He flicks on his lantern and a light pulse travels out in all directions
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with the velocity c. Light arrives at the two ends of the car after a time
interval L/c. In this system, the freight car's rest system, the light
arrives simultaneously at A and B.

Now let us observe the same situation from a different frame, one
moving to the right with velocity v. In this frame the freight car moves
to the left with velocity v. As observed in this frame the light still has
velocity c, according to the second postulate of special relativity. How-
ever, during the transit time, A moves to A* and B moves to B*. It is
apparent that the pulse arrives at B* before A*; the events are not
simultaneous in this frame.

Example 12.1 shows that once we accept the postulates of rela-
tivity we are forced to abandon the intuitive idea of simultaneity.
The Lorentz transformations, which embody the postulates of
relativity, allow us to calculate the times of events in two different
systems.

Example 12.2 An Application of the Lorentz Transformations

How do we find the time of arrival of the light pulse at each end of the
freight car in the last example? The problem is trivial in the rest frame.
Take the origin of coordinates at the center of the car, and take t = 0
at the instant the lantern flashes. The two events are
Event 1:

Pulse arrives at end A

Event 2:

Pulse arrives at end B{

-L

' x2 = L

To find the time of the events in the moving system we apply the
Lorentz transformations for the time coordinates.

Event 1:

- , * (T + '-T)
VI - v2/c2 \ c )
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Event 2:

— v/c

+ v/c

In the moving system, the pulse arrives at B (event 2) earlier than it
arrives at A, as we anticipated.

As we saw in the last two examples, simultaneity is not a par-
ticularly fundamental property of events; it depends on the coor-
dinate system. Is it possible to find a coordinate system in
which any two events are simultaneous? As the following exam-
ple shows, there are two classes of events. For two given events,
we can either find a coordinate system in which the events are
simultaneous or one in which the events occur at the same point
in space.

Example 12.3 The Order of Events: Timelike and Spacelike Intervals

Two events A and B have the following coordinates in the x, y system.

Event A\

xA, tA.

Event B:

xB, tB.

(For both events, y = 0.)
The distance L and time T separating the events in the x, y system

are

L = xB - xA

T = tB - tA.

For concreteness, we take L and T to be positive. To find the coor-
dinates in the x', y' system we use the Lorentz transformations, Eq.
(12.1):

X'A — y(xA — vtA)

- vtB)

VXB\
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The distance U between the events in the x\ y' system is

L' = x'B - x'A

= y[xB — xA — v(tB — tA)]

U = T(L - vT).

Similarly,

T •('-?>
Assuming that v is always less than c, it follows that if L > cT, U is

always positive, while Tf can be positive, negative, or zero. Such an
interval is called spacelike, since it is possible to choose a system in
which the events are simultaneous, namely, a system moving with v =
c2T/L. On the other hand, if L < cT, Tr is always positive, whereas U
can be positive, negative, or zero. The interval is then known as time-
like, since it is possible to find a coordinate system in which the events
occur at the same point.

12.3 The Lorentz Contraction and Time Dilation

Two dramatic results of the special theory of relativity are that a
meter stick is shorter when moving than when it is at rest, and
that a moving clock runs slow. These results are quite real: the
experimental evidence for relativity is so overwhelming that physi-
cists now regard such kinematic effects as commonplace.

The Lorentz Contraction

Consider a stick at rest in the xf, y' system, lying along the x1 axis
with its ends at xA and xB. The length of the stick is U = xB — xA.
l0 is called the "rest," or "proper," length of the stick: it is what
we normally mean when we talk of length. The system x'', yf is
called the rest, or proper, system of the stick.

Now let us determine the length of the stick I in the system in
which the observer is at rest. This system, known as the "lab-

1 ' I x' oratory" system, has coordinates x, y. In the laboratory system
~x the stick moves to the right with velocity v.

The length of a stick is the distance between its ends at the
same instant of time. The end points must be determined simul-
taneously in the lab system; we must find the correspondence
between xf and x at some value of t. This is readily accomplished
by applying the Lorentz transformation xf = y(x — vt). We have

' - vt)
- vt).
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Subtracting, we obtain l0 = yl, or

I is shorter than l0: the meter stick is contracted. As v—>cf

I —• 0. This shortening, known as the Lorentz contraction, occurs
only along the direction of motion: if the stick lay along the y axis,
we would use the transformation y' = y to find l0 = I.

A word of caution. The following argument is fallacious—but it is easy
to get trapped by it. "In the rest system, the end of the stick has coor-
dinates xA and xB at some time V = 0. To find the length in the lab
system we use x = y(x' + vtf), and obtain I = yl0. Hence, the moving
stick looks long." The error is that the end points must be measured
simultaneously in the lab system. These measurements will not be
simultaneous in the rest system, but this is of no consequence.

Example 12.4 The Orientation of a Moving Rod

A rod of length Zo lies in the x'y' plane of its rest system and makes an
angle do with the x1 axis. What is the length and orientation of the rod
in the lab system x, y in which the rod moves to the right with velocity vl

Designate the ends of the rod A and B. In the rest system these
points have coordinates

A:

B'. Zo cos

y'A

y = ô sin do.

We require the coordinates of A and B in the lab system at a time t.
We use x' = y(x — vt), y' = y to obtain:

A: xA = 0 = y(xA - vt)

B: xB = l0 cos d0 = y(xB — vt)

Hence,

lo cos do
xB — xA =

y
yB — VA — IQ sin do.

The length is

I = [{XB - xA)2 + (yB - yAf]h

) cos2 do + sin2 d0

VfA = ° =
y'B = Zosi

I
1 cos2 do
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The angle that the rod makes with the x axis is

6 = arctan —

( sin 0O\
7 I

COS 0o/

xB — xA

= arctanf

= arctan (7 tan 0O).

The moving rod is both contracted and rotated.

Time Dilation

Next we investigate the effect of motion on time. Consider a
clock at rest in the x', y' system and consider two events A and
B, both occurring at the same point x0:

A. ' / '
SI. Xo lA

B: x'o 4

The interval r = t'B — t'A is the time interval between the events
in the rest system. It is called the proper time interval.

In order to find the corresponding time interval in the laboratory
system we use t = y(t' + x'v/c2).

Subtracting to obtain T = tB — tA, we find

T = 7(4 - O
= 77

V l - V2/C2

The time interval in the laboratory system is greater than that
in the rest system; the moving clock runs slow. This effect, known
as time dilation, has important practical consequences.

Example 12.5 Time Dilation and Meson Decay

The lifetime of cosmic ray /i mesons (muons) has become a classic demon-
stration of time dilation. The effect was first observed by B. Rossi and
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D. B. Hall1 and is the subject of an excellent film by D. H. Frisch and
J. H. Smith.2

The experiment hinges on the fact that the muon is an unstable par-
ticle which spontaneously decays into an electron and two neutrinos.
The meson carries either a positive or negative charge and decays into
either a positive electron (positron, e+) or ordinary electron (e~).

Symbolically, we can write

v stands for neutrino and v for antineutrino. The decay of the \x meson
is typical of radioactive decay processes: if there are N(0) muons at t = 0,
the number at time t is

N(t) = N(0)e-tlT,

where r, the mean lifetime, is 2.15 X 10~6 s. Muons can be observed
by stopping them in dense absorbers and detecting the decay electron,
which comes off with an energy of about 40 MeV (1 MeV = 1 million elec-
tronvolts = 1.6 X 10~13 J).

ju. mesons are formed in abundance when high energy cosmic ray pro-
tons enter the earth's upper atmosphere. The protons lose energy
rapidly, and at the altitude of a typical mountaintop, 2,000 m, there are
few left. However, the muons penetrate far through the earth's atmos-
phere and many reach the ground.

The muons descend through the earth's atmosphere with a velocity
close to c. The minimum time to descend 2,000 m is then

2 X 103 m

3 X 108 m/s

= 7 X 10~6 s.

This is more than three times the lifetime; T/T ~ 3.
The experiment consists of comparing the flux of \i mesons at the top

of a mountain with the flux at sea level. We can safely neglect the for-
mation of new mesons in the lower atmosphere or the loss of mesons
due to absorption in air. One might expect

flux at sea level
e-T/T

flux at mountaintop

= 0.045.

1 B. Rossi and D. B. Hall, Physical Review, vol. 59, p. 223,1941.
2 An account of the experiment demonstrated in the film is given by D. H. Frisch
and J. H. Smith, American Journal of Physics, vol. 31, p. 342,1963.
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However, the experimental result disagrees sharply: the ratio is 0.7,
corresponding to T/r = 0.3, which is smaller than the predicted ratio
by a factor of 10.

The resolution of the disagreement is that we have neglected time
dilation. The lifetime r refers to the decay of a meson at rest. The /x
mesons in the atmosphere are moving at high speed with respect to
the laboratories on the mountaintop and at its base. When the muon
moves rapidly, the lifetime r' we observe is increased by time dilation.
The observed lifetime is

v2/c2

To account for the observed muon decay rate, we require y = 10.
This was found to be the case: by measuring the energy of the mesons,
7 was determined, and within experimental error it agreed with the
prediction from relativity.

Example 12.6 The Role of Time Dilation in an Atomic Clock

Possibly you have looked through a spectroscope at the light from
an atomic discharge lamp. Each line of the spectrum is composed
of the light emitted when an atom makes a transition between two of
its internal energy states. The lines have different colors because the
frequency v of the light is proportional to the energy change AE in
the transition. (Atomic spectra are discussed in more detail in Sec.
6.8.) If AE is of the order of electron volts, the emitted light is in the
optical region (v « 1015 Hz). There are some transitions, however, for
which the energy change is so small that the emitted radiation is in the
microwave region (v ~ 1010 Hz). These microwave signals can be detected
and amplified electronically. Since the oscillation frequency depends
almost entirely on the internal structure of the atom, the signals can
serve as a frequency reference to govern the rate of an atomic clock.
Atomic clocks are highly stable and relatively immune to external
influences.

Each atom radiating at its natural frequency serves as a miniature
clock. The atoms are frequently in a gas and move randomly with ther-
mal velocities. Because of their thermal motion, the clocks are not at
rest with respect to the laboratory and the observed frequency is shifted
by time dilation.

Consider an atom which is radiating its characteristic frequency vo
in the rest frame. We can think of the atom's internal harmonic motion
as akin to the swinging motion of the pendulum of a grandfather's clock:
each cycle corresponds to a complete swing of the pendulum. If the
period of the swing is TO seconds in the rest frame, the period in the
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laboratory is r = yro- The observed frequency in the laboratory sys-
tem is

- \ - _L - v°
T 7To 7

The shift in the frequency is bv = v — v0. If v2/c2 <<C 1, 7 ~ 1 —
iv2/c2, and the fractional change in frequency is

8P V — VQ 1 v2

VQ VO 2 C2

A handy way to evaluate the term on the right is to multiply numerator
and denominator by M, the mass of the atom:

bv iMv2

v0 Me2

\Mv2 is the kinetic energy due to thermal motion of the atom. This
energy increases with the temperature of the gas, and according to an
elementary result of statistical mechanics,

where v2 is the average squared velocity, k = 1.38 X 10~23 J/deg is
Boltzmann's constant, and T is the absolute temperature.

In the atomic clock known as the hydrogen maser, the reference fre-
quency arises from a transition in atomic hydrogen. M is close to the
mass of a proton, 1.67 X 10~27 kg, and using c = 3 X 108 m/s, we obtain
from Eq. (1),

bv | X 1.38 X 10"23 _

v 1.67 X 10~27 X 9 X 1016

= 1.4 X 10~13 T.

At room temperature, T = 300 K (300 degrees on the absolute tempera-
ture scale or 27°C), we have

_ = -4.2 x 10"11.
v

This, believe it or not, is a sizable effect. In order to correct for time
dilation to an accuracy of 1 part in 1013, it is necessary to know the tern-
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perature of the radiating atoms to an accuracy of one degree. However,
if one wishes to compare frequencies to parts in 1015, the absolute tem-
perature must be known to millidegrees, a much harder task.

12.4 The Relativistic Transformation of Velocity

The starship Enterprise silently glides to the east with speed 0.9c.
At the same time, the starship Fleagle glides to the west with
speed 0.9c. Classically, the relative speed of the ships is 1.8c,
and the Fleagle's crew would see the Enterprise moving away with
a speed faster than light. According to special relativity the pic-
ture is quite different. To show this we need the relativistic law
for the addition of velocities.

y Consider a particle with instantaneous velocity u = (uxtuy) in the
| £ x, y, z, t system. Our task is to find the corresponding components

u'x, uy in the x', y', z', t' system, which moves with speed v along
the positive x axis.

From the definition of velocity, we have, in the unprimed system,

ux = lim — Uy = lim —
At—>o At At—*o At

X
X

The corresponding components in the primed system are

Ax' , Ay'
ux = lim — - uy = lim — - •

At'—>0 At At'—>0 At

The problem is to relate displacements and time intervals in the
primed system to those in the unprimed system. Using the pro-
cedure of Example 12.2 (or simply writing the Lorentz transforma-
tions for differentials), we find

Ax =

Ay' =

At' =

Hence

Ax'
At'

7 (Ax — v At)

Ay

y(At-V-Ax).

I

Y(A£ — vAt)

y[At - (v/c2)Ax]

Ax/At - v
1 - (v/c2)(Ax/At)
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Next we take the limit A2—> 0. Since Ax = ux At, Az—> 0 when
A£—• 0. The Lorentz transformations show that Ax' and A*' also
approach zero. Using ux = lim (Ax'/At'), we obtain

1 — VUx/c2

Similarly,

12.2a

y = Ml -vu /c*' U2b

By symmetry, uz behaves like uy:

7[1 — vux/c
2]

These transformations can be inverted by changing the sign
of v:

ux = — — T ^ - 2 12.3a

7[1 + VUJC2]
t

Uz = ^—r,— 12.3c
7[1 + VUjC2]

In these formulas, y = 1 / V l — v2/c2 as before.
Equation (12.2a) or (12.3a) is the relativistic law for the addition

of velocities. For v « c, we obtain the Galilean result ux = ux — v.
Returning to the problem of the two starships, let ux = 0.9c be

the speed of the Enterprise relative to the ground, and v = —0.9c
be the speed of the Fleagle relative to the ground. The velocity
of the Enterprise relative to the Fleagle is, from Eq. (12.2a),

0.9c - (0.9c)
ux 1 - [(-0.9c)(0.9c)]

_ L8c

" 1.81

= 0.99c.

The relative speed is less than c. The relativistic transforma-
tion of velocities assures that we cannot exceed the velocity of
light by changing reference frames.
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The limiting case is ux = c.
is then

The velocity in the moving system

c — v
ur. = 1 — vc/c2

= c,

independent of v. This agrees with the postulate we originally
built into the Lorentz transformations: the velocity of light is the
same for all observers. Furthermore, it suggests that the velocity
of light plays the role of an ultimate speed in the theory of
relativity.

Example 12.7 The Speed of Light in a Moving Medium

As an exercise in the relativistic addition of velocities, let us find how the
motion of a medium, such as water, influences the speed of light.

The velocity of light in matter is less than c. The index of refraction,
n, is used to specify the speed in a medium:

n =

- Light beam

velocity of light in the medium

n = 1 corresponds to empty space; in matter n > 1. The slowing can
be appreciable: for water n — 1.3.

The problem is to find the speed of light through a moving liquid. For
instance, consider a tube filled with water. If the water is at rest, the
velocity of light in the water with respect to the laboratory is u = c/n.
What is the speed of light when the water is flowing with speed vl

Consider the speed of light in water as observed in a coordinate system
x', y1 moving with the water. The speed is

u' = -•
n

The speed in the laboratory is, by Eq. (12.3a),

u' + v c/n + v _ c / l + nv/c\
U ~ 1 + u'v/c2 ~ 1 + v/nc ~ n \1 + v/nc)

If we expand the last term and neglect terms of order (v/c)2 and smaller,
we obtain

c ( nv v\
u = - ( 1 H )

n \ c nc/

-i+ .(.-!>
n \ n2/
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The light appears to be dragged by the fluid, but not completely.
Only the fraction / = 1 — 1/n2 of the fluid velocity is added to the speed
of light c/n. This effect was observed experimentally in 1851 by Fizeau,
although it was not explained satisfactorily until the advent of relativity.

12.5 The Doppler Effect

The roar of a car or motorcycle zooming past is characterized
by a rapid drop in pitch as the vehicle goes by. The effect is
quite noticeable if you listen for it at the side of a road. (It is
the sound most people make when trying to mimic a near miss
by a speeding car.) The decrease in frequency of all the sounds
from the car as it goes by is due to the Doppler effect. In general,
the Doppler effect is a shift in frequency due to the motion of a
source or an observer. The Doppler shift occurs for light as well
as sound. Our knowledge of the motion of distant receding
galaxies comes from studies of the Doppler shift of their spectral
lines. More prosaic applications of the Doppler effect include
satellite tracking and radar speed traps.

We shall start by examining the Doppler shift in sound—a situ-
ation we can treat classically.

The Doppler Shift in Sound

Sound travels through a medium, such as air, with a speed w
determined by the properties of the medium, independent of the
motion of the source.

Consider a source of sound which is moving with velocity v
through the medium toward an observer at rest. To simplify the
geometry we shall restrict ourselves for the present to the case
where the observer is along the line of motion. We can regard
the sound as a regular series of pulses separated by time r0 = l/v0,
where v0 is the number of pulses per second generated by the
source. (v0 corresponds to the frequency of sound from the
source.) The situation is shown in the sketch.

In time T the sound travels a distance wT, and if the pulses
are separated by distance L, the number reaching the observer
is wT/L. The rate at which the pulses arrive is w/L, and this is
the frequency of sound vD heard by the observer:

w
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wT0

To determine L, consider a pulse emitted at t = 0 and the next
pulse emitted at t = r0. During the interval r0 the first pulse
travels distance WT0 in the medium, and the source travels dis-
tance VT0. The distance between the pulses is therefore

L = WT0 — VTo

= (w - v) —
vo

Hence,

w
= L

= Vo w
w — v

or

1 -
(Moving source.) 12.4

For an approaching source, v is positive and VD > v0. For a
receding source, v is negative and VD < ô- Qualitatively, this
accounts for the drop in pitch of the sound of a car as it goes by.

The situation is somewhat different if the source is at rest in
the medium and the observer is moving with speed v toward the
source. The situation is shown in the sketch. The speed of the
pulses relative to the observer is w + v. The rate at which pulses
arrive is

w + v
VD =

Since the source is at rest, L = WT0 = w/v0, and

(Moving observer.)w + v
VD = VQ = VQ

w
12.5

This differs from the result for a moving source, Eq. (12.4),
although the results agree to order v/w. The situation is not
symmetric; if v0, v, and w are known, we can tell whether it is the
observer or the source which is moving by measuring VD carefully.
The reason is that in the case of sound there is a medium, the
air, to which motion can be referred.

If it were possible to apply these results to light waves in space,
we would be able to distinguish which of two inertial systems was
at rest. This would contradict the principle of special relativity
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that only the relative motion of inertial systems is observable.
To resolve this difficulty, we turn now to a relativistic derivation
of the Doppler effect.

Relativistic Doppler Effect

A light source flashes with period r0 = l/v0 in its rest frame. The
source is moving toward an observer with velocity v. Due to
time dilation, the period in the observer's rest frame is

r = yr0.

Since the speed of light is a universal constant, the pulses arrive
at the observer with speed c. It is for this reason that the rela-
tive velocity alone plays a role in the Doppler effect for light. In
the classical case, the pulses arrive with a speed dependent on
the state of motion of the observer relative to the medium.

cT-

vi

t=o

The frequency of the pulses is VD = c/L, where L is the separa-
tion in the observer's frame. Since the source is moving toward
the observer,

L =

and

or

This

CT

(c

1

— VT •

C

-V)T

1
- v/c

V i -
Vo 1 -

reduces

= (c - y)r

1

yr0

- v2/c2

- v/c

to

/l + »/c 12.6
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vD is the frequency in the observer's rest frame and v is the rela-
tive speed of source and observer. As we expect, there is no
mention of motion relative to a medium. The relativistic result
plays no favorites with the classical results; it disagrees with both
and, in fact, turns out to be their geometric mean.

X
X

X

The Doppler Effect for an Observer off the Line of Motion

So far we have restricted ourselves to the Doppler effect for a
source and observer along the line of motion. However, consider
a satellite broadcasting a radio beacon signal to a ground tracking
station which monitors the Doppler shifted frequency. Although
our earlier results do not apply to such a case, we can readily
generalize the method to find the Doppler effect when the observer
is at angle 0 from the line of motion. We shall again visualize
the source as a flashing light. The period of the flashes in the
observer's rest frame is r = JTO, as before. The frequency seen
by the observer is c/L. Since the source moves distance VT
between flashes, it is apparent from the lower sketch that

L = CT — VT cos 0

= (c — v cos 0)r.

(We assume that the source and observer are so far apart that
0 is effectively constant between pulses.) Hence

c

L

(c — V COS 0)rO7

or

VD =
Vl - v2/c2

1 — (v/c) cos 0
12.7

In this result, 0 is the angle measured in the rest frame of the
observer. Along the line of motion, 6 = 0 and we recover our
previous result for that case, Eq. (12.6). At 6 = TT/2 the relative
velocity between source and observer is zero. However, even in
this case there is a shift in frequency; vD differs from v0 by the
factor V l — v2/c2. This "transverse" Doppler effect is due to
time dilation. The flashing lamp is effectively a moving clock.

The relativistic Doppler effect agrees with the classical result
to order v/c, so that any experiment to differentiate between
them must be sensitive to effects of order (v/c)2, a difficult task.
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The relativistic expression was confirmed by Ives and Stijwell in
1938 by observations on the spectral light from fast moving atoms.

One of the more interesting practical applications of the Doppler
effect is in navigational systems, as the following example explains.

Example 12.8 Doppler Navigation

The Doppler effect can be used to track a moving body, such as a satel-
lite, from a reference point on the earth. The method is remarkably
accurate; changes in the position of a satellite 108 m away can be deter-
mined to a fraction of a centimeter.

Consider a satellite moving with velocity v at some distance r from a
ground station. An oscillator on the satellite broadcasts a signal with
proper frequency VQ. Since v<Kc for satellites, we can approximate
Eq. (12.7) by retaining only terms of order v/c. Then the frequency
VD received by the ground station can be written

1 - (v/c) cos 0

vo 11 + -cos 0 ).
\ c /

There is an oscillator in the ground station identical to the one in the
satellite, and by simple electronic methods the difference frequency
("beat" frequency) VD — VQ can be measured:

v
VD — VQ — VQ - COS 6.

c

The radial velocity of the satellite is
dr m

— = r • v
dt

= — v cos 6.

Hence
dr c
— = (VD — vo)
dt VQ

where Xo = c/vo is the wavelength of the radiation.
VD varies in time as the satellite's velocity and direction change.

To find the total radial distance traveled between times Ta and Tbf we
integrate the above expression with respect to time:

— ^o) dt.rb - r« = -
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The integral is the number of cycles Nba of the beat frequency which
occur in the interval Ta to Tb. (One cycle occurs in a time r =
1/(VD — vo), so that J dt/r is the total number of cycles.) Hence

n — ra = —\0Nba.

This result has a simple interpretation: whenever the radial distance
increases by one wavelength, the phase of the beat signal decreases one
cycle. Similarly, when the radial distance decreases one wavelength, the
phase of the beat signal increases by one cycle.

Satellite communication systems operate at a typical wavelength of
10 cm, and since the beat signal can be measured to a fraction of a
cycle, satellites can be tracked to about 1 cm. If the satellite and ground-
based oscillators do not each stay tuned to the same frequency, v0, there
will be an error in the beat frequency. To avoid this problem a two-way
Doppler tracking system can be used in which a signal from the ground
is broadcast to the satellite which then amplifies it and relays it back to
the ground. This has the added advantage of doubling the Doppler
shift, increasing the resolution by a factor of 2.

We sketched the principles of Doppler navigation for the classical case
v « c . For certain tracking applications the precision is so high that
relativistic effects must be taken into account.

As we have already shown, a Doppler tracking system also gives the
instantaneous radial velocity of the satellite vr = — C{VD — VQ)/VQ. This
is particularly handy, since both velocity and position are needed to check
satellite trajectories. A more prosaic use of this result is in police radar
speed monitors: a microwave signal is reflected from an oncoming car
and the beat frequency of the reflected signal reveals the car's speed.

12.6 The Twin Paradox

The kinematical effects we have analyzed in this chapter depend
on the relative velocity of two systems; such phenomena as Lorentz
contraction, time dilation, and the Doppler shift give no clue as to
which of two systems is at rest and which is moving, nor can they
do so within the framework of relativity, which postulates that all
inertial systems are equivalent. There is no such equivalence
between noninertial systems. Indeed, there is little difficulty in
deciding whether or not an isolated system is accelerating.

Failure to appreciate this point was responsible for a vociferous
controversy over the so-called "twin paradox." The problem is
of interest because it affords a good illustration of the physical
difference between inertial and noninertial systems.

The paradox is as follows: two identical twins, Castor and Pollux,
A and B for short, have identical clocks. B sets out on a long
space voyage while A remains home. A constantly observes JB'S
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clock and sees that it is running slow due to time dilation. Even-
tually B returns home. Since B's clock has run slow throughout
the trip, A concludes that B is younger than A at the end of the
journey. But suppose we look at the situation from B's point of
view. Since time dilation depends only on relative motion, during
the trip B sees A's clock running slow, and when the trip is finished
B concludes that A is younger than B. Obviously both twins
can't be right. Is either twin really younger?

The explanation lies in the fact that the situation is not equiva-
lent from the point of view of each twin. A's system is inertial
throughout, but B must change his velocity at some time in order
to return to the starting point. While the velocity is changing,
B's system is not inertial. There is no doubt as to which twin is
really accelerating. If each were carrying an accelerometer, such
as a mass on a spring, A's would remain at zero while B's would
show a large deflection at the turning point. It is apparent that
the systems are not equivalent.

We cannot apply special relativity to determine the coordinates
of events in noninertial frames. Fortunately, it is possible to
determine what B will observe during turnaround by introducing
the idea of the Doppler shift.

To make the argument quantitative, suppose that the relative
velocity is v. A observes that B travels away a distance L in
time T = L/v. B then rapidly reverses his motion and returns
with the same velocity. The time for the return trip is also T.
We shall neglect the time it takes B to reverse his motion since
if T is sufficiently long, the turnaround time is negligible.
(Nothing anomalous happens to B's clock during turnaround; A
simply observes a varying dilation factor while the velocity is
changing.)

Neglecting this small turnaround correction, A observes a total
elapsed time Tf

B on B's moving clock which is related to the time
on A's own clock TA = IT by

12-8J
A concludes

aging

aging

of

of A

c

5 that

TA

2

2

is younger.

v j e w e d
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Now let us look at the situation from B's point of view. Except
for the turnaround time, B's observations are similar to A's. B
sees A go away for distance L with velocity — v and return. This
takes time TB = 2T on B's clock, and if B sees time T'A elapse
on A's clock, then

12.10

B seems to conclude that A is younger.

aging of B

aging of A
(As viewed by £ . ) 12.11

This is the paradox: A thinks that B is younger and B thinks that
A is younger.

Now consider what happens to B during turnaround. He
experiences an acceleration as if he were in a gravitational field.
According to the discussion of the principle of equivalence in
Chap. 8, clocks run at different rates in a gravitational field—
this is the origin of the gravitational red shift. For this reason,
B sees A's clock run fast during turnaround and, as we shall show,
this puts A's clock ahead. However, instead of involving the
gravitational red shift, we shall derive the result from simple
kinematics.

Consider a clock C which has period r0 in its rest frame and which emits
signals at frequency p0 = I /TO. An observer D is at rest a distance L
away and starts accelerating toward C at rate a when the signal of fre-
quency VQ leaves C. The signal arrives at time t0 ~ L/c. (We assume
that D has not moved appreciably in time to, and that his velocity is so
low that relativistic effects are negligible.) When the signal arrives, D
is moving toward C at velocity v = at0 = aL/c and the observed fre-
quency, vf, is Doppler shifted. From Eq. (12.6) we have
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where we have neglected terms of order (v/c)2. Since v' > u0, C's
clock appears to run faster than if there were no acceleration. If D's
clock records a time interval

TD = 1M

then C's clock marks off an interval

Tc = lAo-

Hence,

Tc = TD -

Applying this to the twins, suppose that B accelerates uniformly
at rate a toward A during turnaround. B notes on his own clock
that the turnaround time is Tt. He notes that A's clock marks
off an interval

«1-r. (. + £
Since the velocity changes by 2v during turnaround, Tt = 2v/a.
Therefore,

a c2

The total length of the trip is 2L = vTB. Hence, the total time
that B observes on A's clock during turnaround is

v2

[ = Tt + - TB.
c2

The total time that B observes on A's clock during the entire
trip is

C2
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where we have used T'A = TB/y, Eq. (12.10). We shall again
neglect the turnaround time. The Doppler shift correction during
turnaround is valid to order v2/c2 and to this approximation,

, - T, (l - \$ + £

The result of this argument is that from B's point of view,

aging of B _ TB 1 _ 1 v2

aging of A ~ (T'Aoui " 1 + i^2/c2 ~ ~ 2 ^ '

We have already shown, Eq. (12.9), that from A's point of view

aging of B _ T^ _ I ^ _ .. _ 1 ^.
aging of A ~ TA " * c2 ~ 2 c2

The formerly identical twins are in agreement; A has aged more
than B. The paradox is resolved.

Our analysis is valid only to order v2/c2. To this order, the
special theory of relativity led to no contradictions as long as we
treated the accelerated reference frame separately. An exact
calculation appears to require the general theory of relativity.

Problems

y'\ In these problems S refers to an inertial system x, y, z, t and Sf refers

I * v to an inertial system xr, y', zr, tf, moving along the x axis with speed v
I relative to S. The origins coincide at t = V = 0. Take c = 3 X 108

\s. m/s.

* x' 12.1 Assume that v = 0.6c. Find the coordinates in S' of the following

events.

a. x — 4 m, t = 0 s.

b. x = 4 m, t = 1 s.

c. x = 1.8 X 108 m, t = 1 s.

d. x = 109 m, t = 2 s.

12.2 An event occurs in £ at x = 6 X 108 m, and in 8' at x' = 6 X 108 mf

£' = 4 s. Find the relative velocity of the systems.

12.3 The clock in the sketch on the opposite page can provide an intuitive
explanation of the time dilation formula. The clock consists of a flash
tube, mirror, and phototube. The flash tube emits a pulse of light which
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Mirror

Rest frame

travels distance L to the mirror and is reflected to the phototube. Every
time a pulse hits the phototube it triggers the flash tube. Neglecting
time delay in the triggering circuits, the period of the clock is r0 = 2L/c.

Now examine the clock in a coordinate system moving to the left with
uniform velocity v. In this system the clock appears to move to the
right with velocity v. Find the period of the clock in the moving system
by direct calculation, using only the assumptions that c is a universal
constant, and that distance perpendicular to the line of motion is unaf-
fected by the motion. The result should be identical to that given by
the Lorentz transformations: r = r o / V l — v2/c2.

12.4 A light beam is emitted at angle 0O with respect to the xf axis in
S'.

a. Find the angle 0 the beam makes with respect to the x axis in S.

Ans. cos 0 = (cos 0O + v/c)/(l + v/c cos 0O)

b. A source which radiates light uniformly in all directions in its rest
frame radiates strongly in the forward direction in a frame in which it is
moving with speed v close to c. This is called the headlight effect; it
is very pronounced in synchrotrons in which electrons moving at rela-
tivistic speeds emit light in a narrow cone in the forward direction.
Using the result of part a, find the speed of a source for which half the
radiation is emitted in a cone subtending 10~3 rad.

Ans. v = c(l - 5 X 10"7)

12.5 An observer sees two spaceships flying apart with speed 0.99c.
What is the speed of one spaceship as viewed by the other?

Ans. 0.99995c

12.6 A rod of proper length Zo oriented parallel to the x axis moves with
speed u along the x axis in S. What is the length measured by an
observer in S'?

Ans. I = lQ[(c2 - v2)(c2 - w2)]*/(c2 - uv)

12.7 One of the most prominent spectral lines of hydrogen is the Ha

line, a bright red line with a wavelength of 656.1 X 10~9 m.

a. What is the expected wavelength of the Ha line from a star reced-
ing with a speed of 3,000 km/s?

Ans. 662.7 X 10~9 m

b. The Ha line measured on earth from opposite ends of the sun's
equator differ in wavelength by 9 X 10~12 m. Assuming that the effect
is caused by rotation of the sun, find the period of rotation,
meter of the sun is 1.4 X 106 km.

The dia-

Ans. 25 d

12.8 The frequency of light reflected from a moving mirror undergoes
a Doppler shift because of the motion of the image. Find the Doppler
shift of light reflected directly back from a mirror which is approaching
the observer with speed v, and show that it is the same as if the image
were moving toward the observer at speed 2f/( l + v2/c2).



486 RELATIVISTIC KINEMATICS

12.9 A slab of glass moves to the right with speed v. A flash of light is
emitted from A and passes through the glass to arrive at B, a distance
L away. The glass has thickness D in its rest frame, and the speed of
light in the glass is c/n. How long does it take the light to go from A
to B?

Ans. clue. If v = 0, T = [L + (n - l)D]/c; if v = c, T = L/c

12.10 Here is the pole-vaulter paradox. A pole-vaulter and a farmer have
the following bet: the pole-vaulter has a pole of length l0, and the farmer
has a barn f£0 long. The farmer bets that he can shut the door of the
barn with the pole completely inside. The bet being made, the farmer
asks the pole-vaulter to run into the barn with a speed of v = c V 3 / 2 .
In this case the farmer observes the pole to be Lorentz contracted to
I = lQ/2, and the pole fits into the barn with ease. He slams the door
the instant the pole is inside, and claims the bet. The pole-vaulter dis-
agrees: he sees the barn contracted by a factor of 2, and so the pole
can't possibly fit inside. How would you settle the disagreement? Is
the Lorentz contraction "real" in this problem? (Hint Consider events
at the ends of the pole from the point of view of each observer.)

12.11 The relativistic transformation of acceleration from S' to S can
be found by extending the procedure of Sec. 12.4. The most useful
transformation is for the case in which the particle is instantaneously
at rest in S' but is accelerating at rate a0 in S', parallel to the x' axis.

Show that for this case the x acceleration in S is given by ax = ao/y3.

12.12 The relativistic transformation for acceleration derived in the last
problem shows the impossibility of accelerating a system to a velocity
greater than c. Consider a rocketship which accelerates at constant
rate aQ as measured by an accelerometer carried aboard, for instance a
a mass stretching a spring.

a. Find the speed after time t for an observer in the system in which
the rocketship was originally at rest.

Ans. v = a,ot/y, or v = aot/\/l + (a0t/c)2

b. The speed predicted classically is v0 = aot. What is the actual
speed for the following cases: v0 = 10~3c, c, 103c.

Ans. v = t;0(l - 5 X lO"7), c/y/i, c(l - 5 X 10~7)
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12.13 A young man voyages to the nearest star, a Centauri, 4.3 light-
years away. He travels in a spaceship at a velocity of c/5. When he
returns to earth, how much younger is he than his twin brother who
stayed home?

12.14 Any quantity which is left unchanged by the Lorentz transforma-
tions is called a Lorentz invariant. Show that As is a Lorentz invariant,
where

As2 = (c AO2 - (Ax2 + Ay2 + Az2).

Here At is the interval between two events and (Ax2 + Ay2 + A#2)* is
the distance between them in the same inertial system.
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13.1 Momentum

In the last chapter we saw how the postulates of special relativity
lead in a natural way to kinematical relations which agree with
newtonian relations at low velocity but depart markedly for veloc-
ities approaching c. We turn now to the problem of investigating
the implications of special relativity for dynamics. One approach
would be to develop a formal procedure for writing the laws of
physics in a form which satisfies the postulates of special relativity.
Such a procedure is actually possible; it involves the concepts of
four-vectors and relativistic invariance, and we shall pursue it in
the next chapter. However, here we shall take another approach,
one which is not as powerful or as economical as the method of
four-vectors, but which has the advantage of using physical argu-
ments to show the relation between the familiar concepts of
classical mechanics and their relativistic counterparts.

First we shall focus on conservation of momentum and find
what modifications are needed to preserve this principle in rela-
tivistic mechanics. This is a technique often used in extending
the frontiers of physics: by reformulating conservation laws so
that they are preserved in new situations, we are quite natu-
rally led to generalizations of familiar concepts. In particular,
as the following argument shows, we must modify our idea of
mass to preserve conservation of momentum under relativistic
transformations.

Consider a glancing elastic collision between two identical par-
ticles, A and B. We are going to view the collision in two special
frames: A's frame, the frame moving along the x axis with A,
and B's frame, the frame moving along the x axis with B. We

A's frame

ZTs frame

A

+ Qf

v** A*

A m * v

1"'

V

u'/yk

V

?••
Before After
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take the collisions to be completely symmetrical. Each particle
has the same y speed u0 in its own frame before the collision, as
shown in the sketches. The effect of the collision is to alter the
y velocities but leave the x velocities unchanged.

The relative x velocity of the frames is F and by the law of
transformation of velocities, Eq. (12.2), the y velocity of the oppo-
site particle in each frame is uo/y = u0 V l — V2/c2.

After the collisions the y velocities have reversed their direc-
tions as shown in the sketches. The situation remains sym-
metrical. If the y speed of A and B in their own frames is u',
the y speed of the other particle is u'/y.

Our task is to find a conserved quantity analogous to classical
momentum. We suppose that the momentum of a particle mov-
ing with velocity w is

p = m(w)\N,

where m(w) is a scalar quantity, yet to be determined, analogous
to newtonian mass, but one which may depend on the speed w.

The x momentum in A's frame is due entirely to particle B.
Before the collision B's speed is w = (F2 + uQ

2/y2)h, and after
the collision it is wf = (F2 + u'2/y2)K Imposing conservation of
momentum in the x direction yields

m(w)V = m(w')V.

It follows that w = w't so that

uf = u0.

Next we write the statement of the conservation of momentum
in the y direction, as evaluated in A's frame. Equating the y
momentum before and after the collision gives

— m(uo)uo + m(w)— = m(uo)uo — m(w) —
7 7

or

m(w) = ym(u0).

In the limit u0 —> 0, m(u0) —• m(0), which we take to be the new-
tonian mass, or "rest mass" m0 of the particle. In this limit,
w = F. Hence

m(V) = ym(Q) = , m° 13.1
V l - F2/c2
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We have found the dependence of m on speed. In general,
therefore,

P =
mou

= mu
V l - u2/c2

for a particle moving with arbitrary velocity u, where

ra0
m = V l - u2/c2

13.2

Example 13.1 Velocity Dependence of the Electron's Mass

At the beginning of the twentieth century there were several speculative
theories which predicted that the mass of an electron varies with its speed.
These theories were based on various models of the structure of the elec-
tron. The principal theories were those of Abraham (1902), which pre-
dicted m = mo[l -f i(v2/c2)] for v « c,f and of Lorentz (1904), which gave
m = W o / V l - v2/c2 « mo[l + i(v2/c2)]. The Abraham theory, which
retained the idea of the ether drift and absolute motion, predicted no
time dilation effect. Lorentz' result, while identical in form to that pub-
lished by Einstein in 1905, was derived using the ad hoc Lorentz contraction
and did not possess the generality of Einstein's theory.

Experimental work on the effect of velocity on the electron's mass was
initiated by Kaufmann in Gottingen in 1902. His data favored the theory
of Abraham, and in a 1906 paper he rejected the Lorentz-Einstein results.
However, further work by Bestelmeyer (1907) in Gottingen and Bucherer
(1909) in Bonn revealed errors in Kaufmann's work and confirmed the
Lorentz-Einstein formula.

Physicists were in agreement that the force on a moving electron in
an applied electric field E and magnetic field B is q(E + v X B) (the units
are SI), where q is the electron's charge and v its velocity. Bucherer
employed this force law in the apparatus shown at left. The apparatus
is evacuated and immersed in an external magnetic field B perpendicular
to the plane of the sketch. The source of the electrons A is a button of
radioactive material, generally radium salts. The emitted electrons
("beta rays") have a broad energy spectrum extending to 1 MeV or so.
To select a single speed, the electrons are passed through a "velocity
filter" composed of a transverse electric field E (produced between two
parallel metal plates C by the battery V) together with the magnetic field
B. E, B, and v are mutually perpendicular. The transverse force is

f Abraham's full result was

3

where /3 = v/c.
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zero when qE = qvB, so that electrons with v = E/B are undeflected
and are able to pass through the slit S.

Beyond S only the magnetic field acts. The electrons move with
constant speed v and are bent into a circular path by the magnetic force
qv X B. The radius of curvature R is given by mv2/R = qvB, or R =
mv/qB = (m/q)(E/B2).

The electrons eventually strike the photographic plate P, leaving a
trace. By reversing E and B, the sense of deflection is reversed. R
is found from a measurement of the total deflection d and the known
geometry of the apparatus. E and B are found by standard techniques.
By finding R for different velocities, the velocity dependence of m/q can
be studied. We believe that charge does not vary with velocity (other-
wise an atom would not stay strictly neutral in spite of how the energy
of its electrons varied), so that the variation of m/q can be attributed to
variation in m alone.

mlmo The graph shows Bucherer's data together with a dashed line corre-

sponding to the Einstein prediction m = mo/v 1 — v2/c2. The agree-
ment is striking.

}' The velocity filter with crossed E and B fields was used by Bestelmeyer
and by Bucherer. (Bucherer attributes the design to J. J. Thomson,
discoverer of the electron.) Kaufmann, on the other hand, used trans-

1.50

1.40

1.30

1.20
^^^^ verse E and B fields which were parallel to one another, and this probably

- • - ^ > ^ caused his erroneous results. His configuration did not select velocities;
0 30 0 40 0 50 0 60 0 70 instead, all the electrons were spread into a two dimensional trace on

v/c the photographic plate. Electrons of different speeds followed different
deflected paths between the plates C, and nonuniformity of the E field
gave rise to substantial errors.

In recent years the relativistic equations of motion have been
used to design high energy electron and proton accelerators. For
protons, accelerators have been operated with m/m0 up to 200,
while for electrons the ratio m/m0 = 40,000 has been reached.
The successful operation of these machines leaves no doubt that
the relativistic results are accurate.

13.2 Energy

By generalizing the classical concept of energy, we can find a
corresponding relativistic quantity which is also conserved. From
the discussion in Chap. 4 we can write the kinetic energy of a par-
ticle, K, as

J° dt
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For a classical particle moving with velocity u, p = mu, where m
is constant. Then

Kb~Ka = f'dt
rb du

= m — 'Udt
Ja dtdt

= / mu • du.
Ja

Using the identity u • du = |d(u • u) = id(u2) = u du, we obtain

Kb — Ka =
It is natural to try the same procedure starting with the rela-

tivistic expression for momentum p = mou/V1 — u2/c2.

dt
rb d f raou

= Ja dtlVl -u2/\
rb f mou ]

./« L v i - u2/c2-i

The integrand is u • dp = d(u • p) — p • du. Therefore

Kb- Ka = ( u . p ) b - T p - d u
a y a

6 «• 6 ntou du

Vl - U2/C2

where we have used the earlier identity u • du =udu. The
integral is elementary, and we find

; b

— Ka
 = —

V l - u2/c2 + m0c
2

Take point b as arbitrary, and let the particle be at rest at point
a, ua = 0.

K
Vl - u2/c2

mo[u2 + c2(l - u2/c2)]

Vl - u2/c2

2 L ^ o
m0c

2 \ 1 — m0c
2

— m0c
2

m0c
2

Vl - u2/c2 — m0c
2
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or

K = me2 - m0c
2, 13.3

where m = ra0/ v 1 — w2/c2.
This expression for kinetic energy bears little resemblance to

its classical counterpart. However, in the limit u « c, the rela-
tivistic result should approach the classical expression K = \mu2.
This is indeed the case, as we see by making the approximation
1 / V l - u2/c2 « 1 + \u2/c2. Then

— m0c
2

V I - ^2

The kinetic energy arises from the work done on the particle
to bring it from rest to speed u. Suppose that we rewrite Eq.
(13.3) as

me2 = K + m0c
2

= work done on particle + m0c
2. 13.4

Einstein proposed the following bold interpretation of this result:
me2 is the total energy E of the particle. The first term arisesfrom
external work; the second term, ra0c

2, represents the "rest" energy
the particle possesses by virtue of its mass. In summary

E = me2. 13.5

It is important to realize that Einstein's generalization goes far
beyond the classical conservation law for mechanical energy.
Thus, if energy AE is added to a body, its mass will change by
Am = AE/c2, irrespective of the form of energy. AE could repre-
sent mechanical work, heat energy, the absorption of light, or any
other form of energy. In relativity the classical distinction between
mechanical energy and other forms of energy disappears. Rela-
tivity treats all forms of energy on an equal footing, in contrast to
classical physics where each form of energy must be treated as a
special case. The conservation of total energy E = me2 is a con-
sequence of the very structure of relativity. In the next chapter
we shall show that the conservation laws for energy and momen-
tum are different aspects of a single, more general, conservation
law.
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The following example illustrates the relativistic concept of
energy and the validity of the conservation laws in different inertial
frames.

Example 13.2 Relativistic Energy and Momentum in an Inelastic Collision

Suppose that two identical particles collide with equal and opposite
velocities and stick together. Classically, the initial kinetic energy is
2(iMV2) = MV2, where M is the newtonian mass. By conservation of
momentum the mass 2M is at rest and has zero kinetic energy. In the
language of Chap. 4 we say that mechanical energy MV2 was lost as heat.
As we shall see, this distinction between forms of energy does not occur
in relativity.

Now consider the same collision relativistically, as seen in the original
frame x, y, and in a frame x', y' moving with one of the particles. By
the relativistic transformation of velocities, Eq. (12.2),

U =
- , FVc2

in the direction shown.

o

o

Before After

Let the rest mass of each particle be Moi before the collision and MQf

after the collision. In the x, y frame, momentum is obviously conserved.
The total energy before the collision is 2MQic

2/y/\ - V2/c2, and after
the collision the energy is 2Mo/c2. No external work was done on the
particles, and the total energy is unchanged. Therefore,

2M0ic
2

= 2M0/c
2

or
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The final rest mass is greater than the initial rest mass because the
particles are warmer. To see this, we take the low velocity approximation

( 1 V2\1 +
 2~7y

The increase in rest energy for the two particles is 2(M0f — M0i)c
2 «

Z&MoiV2), which corresponds to the loss of classical kinetic energy.
Now, however, the kinetic energy is not "lost"—it is present as a mass
increase.

By the postulate that all inertial frames are equivalent, the conserva-
tion laws must hold in the x', yf frame as well. If our assumed conserva-
tion laws possess this necessary property, we have in the x', y' frame

MoiU 2M0/V

V I - U2/c2 V l - V2/c2

by conservation of momentum and

Mo*2 _ Wore2

V I - U2/c2 V I - V2/c2

by the conservation of energy.
The question now is whether Eqs. (3) and (4) are consistent with our

earlier results, Eqs. (1) and (2). To check Eq. (3), we use Eq. (1) to write

i _ El = i - 4 7 2 / c 2

(1 + V2/c2)2

- V2/c2)2

(1 + V2/c2)2

From Eqs. (1) and (5),

U 2V (1 + V2/c2)

- U2/c2 0 + V2/c2) (1 - V2/c2)

- 2V

~ 1 - V2/c2

and the left hand side of Eq. (3) becomes

MoiU 2MQiV- V2/c2

From Eq. (2), Moi = Mo/ V l - V2/c2, and Eq. (6) reduces to

MQiU 2M0/V

Vl - U2/c2 V l - V2/c2
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which is identical to Eq. (3). Similarly, it is not hard to show that Eq.
(4) is also consistent.

We see from Eq. (6) that if we had assumed that rest mass was
unchanged in the collision, M0{ = Mo/, the conservation law for momen-
tum (or for energy) would not be correct in the second inertial frame.
The relativistic description of energy plays an essential part in main-
taining the validity of the conservation laws in all inertial frames.

x\ .

Screen

Example 13.3 The Equivalence of Mass and Energy

In 1932 Cockcroft and Walton, two young British physicists, successfully
operated the first high energy proton accelerator and succeeded in
causing a nuclear disintegration. Their experiment provided one of the
earliest confirmations of the relativistic mass-energy relation.

Briefly, their accelerator consisted of a power supply that could reach
600 kV and a source of protons (hydrogen nuclei). The power supply
used an ingenious arrangement of capacitors and rectifiers to quadruple
the voltage of a 150-kV supply. The protons were supplied by an electrical
discharge in hydrogen and were accelerated in vacuum by the applied
high voltage.

Cockcroft and Walton studied the effect of the protons on a target of
7Li (lithium, having atomic mass 7). A zinc sulfide fluorescent screen,
located nearby, emitted occasional flashes, or scintillations. By various
tests they determined that the scintillations were due to alpha particles,
the nuclei of helium, 4He. Their interpretation was that the 7Li captures
a proton and that the resulting nucleus of mass 8 immediately disinte-
grates into two alpha particles. We can write the reaction as

*H + 7Li-+ 4He + 4He.

I Proton beam

Lithium target

The mass energy equation for the reaction is

M(7Li)]c2 = 2M(4He)c2

where KCH) is the kinetic energy of the incident proton, K(4He) is the
kinetic energy of each of the emitted alpha particles, and 7l/(1H) is the
proton rest mass, etc. (The initial momentum of the proton is negli-
gible, and the two alpha particles are emitted back to back with equal
energy by conservation of momentum.)

We can rewrite the mass-energy equation as

K = AMc2,

and AM is the initial rest mass minusw h e r e K = 2K(4He) - KC)

the final rest mass.
The energy of the alpha particles was determined by measuring their

range. Cockcroft and Walton obtained the value K = 17.2 MeV (1
MeV = 106 eV = 1.6 X 10~13 J).
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The relative masses of the nuclei were known from mass spectrometer
measurements. In atomic mass units, amu, defined so that il/(16O) =
16, the values available to Cockcroft and Walton were

= 1.0072

M(7Li) = 7.0104 ± 0.0030

M(4He) = 4.0011.

These yield

AM = (1.0072 + 7.0104) - 2(4.0011)

= (0.0154 ± 0.0030) amu.

The rest energy of 1 amu is 931 MeV and therefore

AMc2 = (14.3 ± 2.7) MeV.

The difference between K and AMc2 is (17.2 - 14.3) MeV = 2.9 MeV,
slightly larger than the experimental uncertainty of 2.7 MeV. However,
the experimental uncertainty always represents an estimate, not a pre-
cise limit, and the result can be taken as consistent with the relation
K = AMc2.

It is clear that the masses must be known to high accuracy for study-
ing the energy balance in nuclear reactions. Modern techniques of mass
spectrometry have achieved an accuracy of better than 10~~5 amu, and
the mass-energy equivalence has been amply confirmed. According to
a modern table of masses, the decrease in rest mass in the reaction
studied by Cockcroft and Walton is AMc2 = (17.3468 ± 0.0012) MeV.

Often it is useful to express the total energy of a free particle

in terms of its momentum. Classically the relation is

v2

E = \mv2 = —-
2m

To find the equivalent relativistic expression we must combine the
relativistic momentum

p = rail = — , = = mouy 13.6

V I - u2/c2

with the energy

E = me2 = m0c
2y. 13.7

Squaring Eq. (13.6) gives

9 m0
2u2

v
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which we solve for 7 as follows:

u2 p2

c2 p2 + rao2c2

7 =
Vl - u2/c2

mo
zcz

Inserting this in Eq. (13.7), we have

E =
mo

zcz

The square of this equation is algebraically somewhat simpler
and is the form usually employed.

E2 = (pc)2 + (m0c
2)2 13.8

We have derived the relativistic expressions for momentum and
energy by invoking conservation laws. However, we have not
dealt with the role of force in relativity. It is possible to attack
this problem by considering the form of the equations of motion
in various coordinate systems. We shall develop a systematic
way of doing this in the next chapter, and so we defer the problem
of force for the present.

For convenience, here is a summary of the important dynamical
formulas we have developed so far.

p = rail = raouy 13.9

K = me2 — rrioc2 = m0c
2(y — 1) 13.10

E = me2 = m0c
2y 13.11

E2 = (pc)2 + (m0c
2)2 13.12

13.3 Massless Particles

A surprising consequence of the relativistic energy-momentum
relation is the possibility of "massless" particles—particles which
possess momentum and energy but no rest mass. If we take
ra0 = 0 in the relation

E2 = (pc)2 + (ra0c2)2,
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the result is

E = pc. 13.13

We take the positive root on the plausible assumption that par-
ticles whose energy decreases with increasing momentum would
be unstable.

In order to have nonzero momentum we must have a finite
value for

p = mou

in the limit m0—> 0. This is only possible if u —> c as m0—> 0;
massless particles must travel at the speed of light.

The principal massless particle known to physics is the photon,
the particle of light. Photons interact electromagnetically with
electrons and other charged particles and are easy to detect with
photographic films, phototubes, or the eye. The neutrino, which
is associated with the weak forces of radioactive beta decay, is
believed to be massless, but it interacts so weakly with matter
that its direct detection is extremely difficult. (The sun is a
copious source of neutrinos, but most of the solar neutrinos which
reach the earth pass through it without interacting.) Experi-
ments have shown that the neutrino rest mass is no larger than
1/2,000 the rest mass of the electron, and it could well be zero.
There are theoretical reasons for believing in the existence of the
graviton, a massless particle associated with the gravitational
force. The graviton's interaction with matter is so weak that it
has not yet been detected.

We owe the concept of the photon to Einstein, who introduced
it in his pioneering paper on the photoelectric effect published a
few months before his work on relativity.1 Briefly, Einstein pro-
posed that the energy of a light wave can only be transmitted to
matter in discrete amounts, or quanta, of value hv, where h is
Planck's constant 6.63 X 10~34 J/Hz, and v is the frequency of
the light wave in hertz. The arguments for this proposal grew
out of Einstein's concern with problems in classical electromag-
netic theory and considerations of Planck's quantum hypothesis,
1 Within a period of one year Einstein wrote four papers, each of which became
a classic, on the photoelectric effect, relativity, brownian motion, and the quan-
tum theory of the heat capacity of solids. It was for his work on the photoelectric
effect, not relativity, that Einstein received the Nobel Prize for Physics in 1921.
Relativity was so encumbered with philosophical and political implications that
the Nobel committee refused to acknowledge it. This regrettable incident was
unique in the history of the prize.
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a theory constructed by Planck In 1900 to overcome difficulties in
classical statistical mechanics. Although we cannot develop here
the background necessary to justify Einstein's theory of the photon,
perhaps the following experimental evidence will help make the
photon seem plausible.

Example 13.4 The Photoelectric Effect

In 1887 Heinrich Hertz discovered that metals can give off electrons when
illuminated by ultraviolet light. This process, the photoelectric effect,
represents the direct conversion of light into mechanical energy (here,
the kinetic energy of the electron). Einstein predicted that the energy
an electron absorbs from a beam of light at frequency v is exactly hv.
If the electron loses a certain amount of energy W in leaving the metal,
then the kinetic energy of the emitted electron is

K = hv - W.

W is known as the work function of the metal. The work function is
typically a few electron volts, but unfortunately it depends on the chemical
state of the metal surface, making the photoelectric effect a difficult
matter to investigate. Millikan overcame this problem in 1916 by work-
ing with metal surfaces prepared in a high vacuum system. The kinetic
energy was determined by measuring the photocurrent collected on a
plate near the metal and applying an electric potential between the plate
and photosurface just adequate to stop the current. If the potential is
— V, then the energy lost by the electrons as they travel to the plate is
( - e ) ( - 7 ) . At cutoff we have V = Vc and

eVc = hv - W.

Millikan observed the cutoff voltage as a function of frequency for
several alkali metals. In accord with Einstein's formula, he found that
Vc was a linear function of v, with slope h/e, and that Vc was independent
of the intensity of the light.

If the energy of light were absorbed by the electron according to the
classical picture, the electrons would have a wide energy distribution
depending on the intensity of the light, in sharp disagreement with
Millikan's results. The fact that light can interfere with itself, as in the
Michelson interferometer, is compelling evidence that light has wave
properties. Nevertheless, the photoelectric effect illustrates that light
also has particle properties. Einstein's energy relation, E = hv, pro-
vides the link between these apparently conflicting descriptions of light
by relating the energy of the particle to the frequency of the wave.

Example 13.5 Radiation Pressure of Light

A consequence of Maxwell's electromagnetic theory is that a light wave
carries momentum which it will transfer to a surface when it is reflected
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or absorbed. The result, as we know from our study of momentum in
Chap. 3, is a pressure on the surface. The calculation of radiation pres-
sure is complicated using the wave theory of light, but with the photon
picture it is simple.

Consider a stream of photons striking a perfectly reflecting mirror at
normal incidence. The initial momentum of each photon is p = E/c,
and the total change in momentum in the reflection is 2p = 2E/c. If
there are n photons incident per unit area per second, the total momen-
tum change per second is 2nE/c, and this is equal to the force per unit
area exerted on the mirror by the light. Hence the radiation pressure
Pis

P =
2nE 11

c

Simi-where / = nE is the intensity of the light, the power per unit area,
larly, the radiation pressure on a perfect absorber is I/c.

The average intensity of sunlight falling on the earth's surface at normal
incidence, known as the solar constant, is / ~ 1,000 W/m2. The radia-
tion pressure on a mirror due to sunlight is therefore P = 21 /c = 7 X
10~6 N/m2, a very small pressure. (Atmospheric pressure is 105 N/m2.)
On the cosmic scale, however, radiation pressure is large; it helps keep
stars from collapsing under their own gravitational forces.

Since the photon is a completely relativistic particle, newtonian
physics provides little insight into its properties. For instance,
unlike classical particles, photons can be created and destroyed;
the absorption of light by matter corresponds to the destruction
of photons, while the process of radiation corresponds to the crea-
tion of photons. Nevertheless, the familiar laws of conservation
of momentum and energy, as generalized in the theory of relativity,
are sufficiently powerful to let us draw conclusions about processes
involving photons without a detailed knowledge of the interaction,
as the following examples illustrate.

Example 13.6 The Compton Effect

The special theory of relativity was not widely accepted by the 1920s
partly because of the radical nature of its concepts, but also because
there was little experimental evidence. In 1922 Arthur Compton per-
formed a refined experiment on the scattering of x-rays from matter
which left little doubt that relativistic dynamics was valid.

A photon of visible light has energy in the range of 1 to 2 eV, but photons
of much higher energy can be obtained from x-ray machines, radioactive
sources, or particle accelerators. X-ray photons have energies typically
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in the range 10 to 100 keV, and their wavelengths can be measured with
high accuracy by the technique of crystal diffraction.

When a photon collides with a free electron, the conservation laws
require that the photon lose a portion of its energy. The outgoing photon
therefore has a longer wavelength than the primary photon, and this
shift in wavelength, first observed by Compton, is known as the Compton
effect.

Let the photon have initial energy Eo and momentum Eo/c, and sup-
pose that the electron is initially at rest. After the collision, the electron
is scattered at angle <f> with velocity u and the photon is scattered at
angle 0 with energy E. Let Ee = m 0 c 2 / \ / l - u2/c2 be the final electron
energy and p = mu the momentum. Then, by conservation of energy,

Eo + m0c
2 = E + Ee. 1

By conservation of momentum,

— = — cos 0 + V cos <f> 2
c c

0 = — sin 0 — p sin <f>. 3
c

Our object is to eliminate reference to the electron and find E as a
function of 0, since Compton detected only the outgoing photon in his
experiments. Equations (2) and (3) can be written

(7?o - E cos 0)2 = (pc)2 cos2 <f>

(E s\n 0)2 = (pc)2 s\n2 <f>.

Adding,

Eo2 - 2E0E cos 6 + E2 = (pc)2 4

= Ee
2 - (moc2)2,

where we have used the energy-momentum relation, Eq. (13.12). Using
Eq. (1) to eliminate Ee, Eq. (4) becomes

Eo2 - 2E0E cos 6 + E2 = (Eo + m0c
2 - E)2 - (m0c

2)2,
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which reduces to

E =
Eo

1 + (Eo/moc
2)Q. - cos 0)

Note that E is always greater than zero, which means that a free electron
cannot absorb a photon.

Compton measured wavelengths rather than energies in his experi-
ment. From the Einstein frequency condition,-#0 = hi>o = hc/\0 and
E = hc/\t where Xo and X are the wavelengths of the incoming and out-
going photons, respectively. In terms of wavelength, Eq. (5) takes the
simple form

X = Xo -1 ( l - cos 0).

The quantity h/moc is known as the Compton wavelength of the electron
and has the value

0.7110 0.7356
X,A

= 2.426 X 10~12 m
raoc

= 0.02426 A,

where 1 A = 10"10 m.
The shift in wavelength at a given angle is independent of the initial

photon energy:

X — Xo = (1 — cos 0).

The figure shows one of Compton's results for Xo = 0.711 A and
0 = 90°, where peak P is due to primary photons and peak T to the
Compton scattered photons from a block of graphite. The measured
wavelength shift is approximately 0.0246 A and the calculated value is
0.02426 A. The difference is less than the estimated uncertainty due
to the limited resolution of the spectrometer and other experimental
limitations.

In our analysis we assumed that the electron was free and at rest.
For sufficiently high proton energies, this is a good approximation for
electrons in the outer shells of light atoms. If the motion of the elec-
trons is taken into account, the Compton peak is broadened. (The
broadening of peak T in the figure compared with P shows this effect.)

If the binding energy of the electron is comparable to the photon
energy, momentum and energy can be transferred to the atom as a
whole, and the photon can be completely absorbed.

Example 13.7 Pair Production

We have already seen two ways by which a photon can lose energy in
matter, photoelectric absorption and Compton scattering. If a photon's
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hv

hv
O
M

M

07

energy is sufficiently high, it can also lose energy in matter by the
mechanism of pair production. The rest mass of an electron is m0c

2 =
0.511 MeV. Can a photon of this energy create an electron? The answer
is no, since this would require the creation of a single electric charge.
As far as we know, electric charge is conserved in all physical processes.
However, if equal amounts of positive and negative charge are created,
the total charge remains zero and charge is conserved. Hence, it is
possible to create an electron-positron pair (e~-e+), two particles having
the same mass but opposite charge.

A single photon of energy 2moc
2 or greater has enough energy to form

an e~-e+ pair, but the process cannot occur in free space because it
would not conserve momentum. If we imagine that the process occurs,

v_ conservation of energy gives

hv = m+c2 + m-.c2 = (y+ + 7_)moc
2,

or

— = (7+ + y-)mocf
c

while conservation of momentum gives

hv/c = |7+v+ + 7_v_|m0.

These equations cannot be satisfied simultaneously because

(7+ + y-)c > |7+v+ + 7_v_|.

Pair production is possible if a third particle is available for carrying
off the excess momentum. For instance, suppose that the photon hits
a nucleus of rest mass M and creates an e~-e+ pair at rest. We have

hv + Me2 = 2m0c
2 + Mc2y.

Since nuclei are much more massive than electrons, let us assume that
hv<KMc2. (For hydrogen, the lightest atom, this means that hv<&
940 MeV.) In this case the atom will not attain relativistic speeds and
we can make the classical approximation

hv - 2moc
2 + Mc\y - 1)

« 2m0c
2 + \MV2.

To the same approximation, conservation of momentum yields

Substituting this in the energy expression gives

1 (hv)2

= 2m0c
2

2 Me2 « 2m0c
2,
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since we have already assumed hv<£ Me2. The threshold for pair pro-
duction in matter is therefore 2m0c

2 = 1.02 MeV. The nucleus plays an
essentially passive role, but by providing for momentum conservation it
allows an otherwise forbidden process to occur.

Example 13.8 The Photon Picture of the Doppler Effect

In Chap. 12 we discussed the Doppler effect from the standpoint of wave
theory, but we can also treat it using the photon picture. Consider first
an atom with rest mass Mo, held stationary. If the atom emits a photon
of energy hvOt its new rest mass is given by Al'0c

2 = M0c
2 — hv0.

E Suppose now that the atom moves freely with velocity u before emit-

Qj) *P ting the photon. The atom's energy is E = M0c
2/^/l — u2/c2 and its

momentum is p — Mou/\/l — u2/c2. After the emission of a photon
of energy hv the atom has velocity u', rest mass Mf

0, energy Ef, and
momentum p'. For simplicity, we consider the photon to be emitted
along the line of motion. By conservation of energy and momentum
we have

1

2

E =

V =

W +

<p' +

Therefore,

(E
(pc

- hv)2

- hv)2

hv

hv

c

=

=

E'2

(p'c)2

and

(E - hv)2 - (pc - hv)2 = E'2 - (p'c)2 = (M'0c
2)2 3

by the energy-momentum relation. Expanding the left hand side and
using E2 - (pc)2 = (l/oc2)2, we obtain

(M0c2)2 - lEhv + Ipchv = (M'0c
2)2

= (M0c
2 - hv0)

2.

Simplifying, we find that

(1Moc2 - hv0)
V = VQ

= M0c
2
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Hence,

The term hvo/2Moc2 represents a decrease in the photon energy due
to the recoil energy of the atom. For a massive source, this term is
negligible and

in agreement with the result of the last chapter, Eq. (12.6).
Although it is always satisfying to derive a result by different arguments,

perhaps the chief interest in this exercise is to show how two completely
different views of light, wave and particle, lead to exactly the same pre-
diction for the shift in frequency of radiation from a moving source.

13.4 Does Light Travel at the Velocity of Light?

Although the title of this section may sound rhetorical, the ques-
tion is not trivial. It is apparent that the velocity of light plays a
special role in relativity. In fact, Einstein created the special
theory of relativity primarily from considerations of Maxwell's
electromagnetic theory, the theory of light. However, it is impor-
tant to realize that the real significance of the velocity of light is
that it exemplifies a universal velocity, a velocity whose value is
the same for an observer in any inertial system. There can be
only one such universal velocity in the theory of relativity, as the
following argument shows.

Suppose that there is a second universal velocity c* represent-
ing the velocity of some phenomenon other than light—perhaps
the speed of gravitons or neutrinos. Let us call the phenomenon
r. Consider a light pulse and a r pulse emitted along the x axis
from the origin of the x, y system at t = 0. The pulses travel
according to:

Light: xi = ct

T: xv = c*t.

The relative velocity of the two pulses is

u = — (xT - xi)
at

= c* — c.
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Now consider the same pulses in the.y, y' system which is
moving along the x axis with velocity V. Since c* and c are uni-
versal velocities, the loci of the pulses must be given by

x[ = ctr

x'r = c*t\

The relative velocities of the two pulses is

= c* — c,

as before. But the relativistic transformation of velocities gives

' c ~ V =
° 1 - cV/c2 °

V
fc*y =

- c*V/c2

Thus, the Lorentz transformations predict that

u> = (C*)' - c

1 - c*V/c2 C'

This disagrees with the result above, u' = c* — c, unless c* = c,
in which case u = 0 and u1 = 0. We conclude that there can be
only one universal velocity.

If this argument seems rather formal, perhaps the following
explanation will help. The theory of relativity satisfies the post-
ulate of relativity: all inertial coordinate systems are equivalent.
It also satisfies the postulate that the velocity of light is a universal
constant: all observers in inertial systems will obtain the same
result for the velocity of a particular light signal. However, the
theory of relativity cannot accommodate more than one such
universal velocity; if we try to introduce a second universal
velocity, the whole edifice of relativity collapses. In particular, we
can no longer obtain a consistent recipe for relating coordinates of
events in different systems.

With this background, perhaps we can rephrase the title of this
section more meaningfully as "does light travel with the universal
velocity?" The question is actually quite interesting and a matter
of current investigation.
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Example 13.9 The Rest Mass of the Photon

If the photon had a nonzero rest mass, the velocity of light would differ
from c. If we let mp represent the rest mass of a photon, we would
have

E =

If we assume that the photon energy-frequency relation E = hv
remains valid, then squaring the equation above gives

(hv)2 = (mpc
2)2;

1 - v2/c2

or, after rearranging,

where hv0 = mpc
2. v0 plays the role of a characteristic frequency of the

photon: hv0 is the rest energy of the photon. If v0 = 0, we have v = c.
Otherwise, the velocity of light depends on frequency. Behavior such as
this is well known when light passes through a refractive medium such
as glass or water; it is known as dispersion. The question for experi-
ment to decide is whether or not empty space exhibits dispersion.

There have been a number of recent attempts to set a limit on
the rest mass of the photon (or, better still, to measure it, although
at present there is no compelling reason to believe that the rest
mass is not zero).

Example 13.10 Light from a Pulsar

Pulsars are stars that emit regular bursts of energy at repetition fre-
quencies from 30 to 0.1 Hz. They were discovered in 1968 and their
unexpected properties have been a source of much excitement among
astronomers and astrophysicists. Perhaps the most interesting pulsar
is the one in the Crab nebula. It has the highest frequency, 30 Hz, and
is the only one so far observed which pulses in the optical and x-ray
regions, as well as at radio frequencies. The pulses are quite sharp,
and their arrival time can be measured to an accuracy of microseconds.
It is known that light from the pulsar at different optical wavelengths
arrives simultaneously within the experimental resolving time. We can
use these facts to set a limit on the rest mass of the photon.

It takes light 5,000 years to reach us from the Crab nebula. Suppose
that signals at two different frequencies travel with a small difference in
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velocity, Av, and arrive at slightly different times, T and T -\- AT. Since
T = L/v, where L is the distance from the Crab nebula, we have

Av = _ — AT

or

At; _ AT

7 = "~ ~¥
No such velocity difference has been observed, but by estimating the
sensitivity of the experiment we can set an upper limit to At;. AT7 can
be measured to an accuracy of about 2 X 10~3 s, and using T = 5 X 103

years = 1.5 X 1011 s, we have

AT

T

« 10"14,

2X10"3

1.5 X 1011

where we have taken v « c.
Now let us translate this limit on Av into a limit on the possible rest

mass of a photon. From the result of the last example,

Consider signals at two different frequencies, v\ and v2. We have

cz

The left hand side can be written

+ V2) _ 2—,

where we have taken (1^ — v2) = Av, and V\ + v2 ~ 2c. For observa-
tions made in the optical region we can take v\ = 8 X 1014 Hz (blue) and
v2 = 5 X 1014 Hz (red). Then, using the limit Av/c < 2 X 10~16

f we have

2 X 2 X 10"16 > — [ - - - ) = 2.4 X 10-3W
1028

or

1/0 < 107 Hz.

This gives an upper limit to the photon rest mass of

mp = *!!l < io-4o kg.
2
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An even lower limit to the photon rest mass can be found by observing
the arrival time of radio pulses from the Crab nebula. The analysis is
somewhat more complicated because of the effect of free electrons in
interstellar space. The result is that the rest mass of the photon has
an upper limit of 10~47 kg.

Problems 13.1 It is estimated that a cosmic ray primary proton can have energy
up to 1013 MeV (almost 108 greater than the highest energy achieved with
an accelerator). Our galaxy has a diameter of about 105 light-years.
How long does it take the proton to traverse the galaxy, in its own rest
frame? (1 eV = 1.6 X 1(T19 Jf M9 = 1.67 X 10"27 kg.)

13.2 When working with particles it is important to know when relativistic
effects have to be considered.

A particle of rest mass m0 is moving with speed v. Its classical kinetic
energy is Kcl = mov

2/2. Let Ktel be the relativistic expression for its
kinetic energy.

a. By expanding KThl/Kci in powers of v2/c2, estimate the value of
v2/c2 for which Krel differs from KcX by 10 percent.

b. For this value of v2/c2, what is the kinetic energy in MeV of
(1) An electron (moc

2 = 0.51 MeV)
(2) A proton (m0c

2 = 930 MeV)

13.3 In newtonian mechanics, the kinetic energy of a mass m moving
with velocity v is K = mv2/2 = p2/(2m) where p = mv. Hence, the
change in kinetic energy due to a small change in momentum is dK =
p • dp/m = v • dp.

Show that the relation dK = v • dp also holds in relativistic mechanics.

13.4 Two particles of rest mass ra0 approach each other with equal and
opposite velocity v, in the laboratory frame. What is the total energy of
one particle as measured in the rest frame of the other?

Ans. clue. If v2/c2 = | , E = 3moc
2

13.5 A particle of rest mass m and speed v collides and sticks to a sta-
tionary particle of mass M. What is the final speed of the composite
particle?

Ans. vf = yvm/(ym + M), where y = (1 — i>2/c2)~*

13.6 A particle of rest mass m0 and kinetic energy xm0c
2, where x is some

number, strikes and sticks to an identical particle at rest. What is the
rest mass of the resultant particle?

Ans. clue. If x = 6, m = 4m0

13.7 In the laboratory frame a particle of rest mass m0 and speed v is
moving toward a particle of mass ra0 at rest.
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Light beam

What is the speed of the inertial frame in which the total momentum
of the system is zero?

Ans. clue. If v2/c2 = f, the speed is 2v/3

13.8 A photon of energy Eo and wavelength Xo collides head on with
a free electron of rest mass ra0 and speed v, as shown. The photon is
scattered at 90°.

a. Find the energy E of the scattered photon.

Ans. E = [Eo(l + v/c)]/(l + E0/Ei), where Et = m 0 c 2 /Vl - v2/c2

b. The outer electrons in a carbon atom move with speed v/c ~
6 X 10~3. Using the result of part a, estimate the broadening in wave-
length of the Compton scattered peak from graphite for Xo = 0.711 X
10~10 m and 90° scattering. The rest mass of an electron is 0.51 MeV
and h/(moc) = 2.426 X 10~12 m. Neglect the binding of the electrons.
Compare your result with Compton's data shown in Example 13.6.

13.9 The solar constant, the average energy per unit area falling on the
earth, is 1.4 X 103 W/m2. How does the total force of sunlight compare
with the sun's gravitational force on the earth?

Sufficiently small particles can be ejected from the solar system by
the radiation pressure of sunlight. Assuming a specific gravity of 5, what
is the radius of the largest particle which can be ejected?

13.10 A 1-kW light beam from a laser is used to levitate a solid aluminum
sphere by focusing it on the sphere from below. What is the diameter
of the sphere, assuming that it floats freely in the light beam? The
density of aluminum is 2.7 g/cm3.

13.11 A photon of energy Eo collides with a free particle of mass m0 at
rest. If the scattered photon flies off at angle 0, what is the scattering
angle of the particle, <t>?

Ans. cot <j> = (1 + E0/m0c
2) tan (0/2)
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14.1 Introduction

When a major advance in physics is made, old concepts inevitably
lose importance and points of view which previously were of minor
interest move to the center. Thus, with the advent of relativity
the concept of the ether vanished, taking with it the problem of
absolute motion. At the same time, the transformation proper-
ties of physical laws, previously of little interest, took on central
importance. As we shall see in this chapter, transformation
theory provides a powerful tool for generalizing nonrelativistic con-
cepts and for testing the relativistic correctness of physical laws.
Furthermore, it is a useful guide in the search for new laws. By
using transformation theory we shall derive in a natural way the
important results of relativity that we found by ad hoc arguments
in the preceding chapters. This approach emphasizes the mathe-
matical structure of physics and the nature of symmetry; it illu-
strates a characteristic mode of thought in contemporary physics.

To introduce the methods of transformation theory, we defer
relativity for the moment and turn first to the transformation
properties of ordinary vectors in three dimensions.

14.2 Vectors and Transformations

In Chap. 1 we defined vectors as "directed line segments"; with
the help of transformation theory we can develop a more funda-
mental definition.

To motivate the argument and to illustrate the ideas of trans-
formation theory we shall rely at first on our intuitive concept of
vectors. Consider vector A, which represents some physical quan-
tity such as force or velocity. To describe A in component form
we introduce an orthogonal coordinate system x, y, z with unit
base vectors i, j , k. A can then be written

A = AJ + Ay\ + AX

The coordinate system is not an essential part of the physics; it is
a construct we introduce for convenience. We are perfectly free
to use some other orthogonal coordinate system x', y', z' with base
vectors f, j ' , k'. Let the x', y', zf system have the same origin as
the x, y, z system, in which case the two systems are related by a
rotation. In the primed system,

A = Ay + Aft + A'#.
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For a general coordinate rotation, the components A'x, Ar
y, A'z

r' = r - R

have a definite relation to the components Ax

the two expressions for A gives
Ay, Az. Equating

AXV A'2k' = Ax\ + Ay] + AX

If we take the dot product of both sides with V we obtain

A'x = AX(V • i) + Ay(V • j) + A/y • k) 1 14.1a

Similarly,

Ay = AxQ
f • i) + AyQ' • j) + AJQ' • k) 14.16

A'z = Ax(k' • i) + Ay(V! • j) + At(k
f • k). J 14.1c

The coefficients ( f • 1), (!' • j), etc., are numbers which are deter-
mined by the given rotation; they do not depend on A.

We derived Eq. (14.1) from our concept of vectors as directed
line segments, but now we shall reverse the order and use Eq.
(14.1) to define vectors. A vector in three dimensions is a set of
three numbers which transform under a rotation of the coordinate
system according to Eq. (14.1). It is easy to show that the vector
algebra developed in Chap. 1 is consistent with our new definition
of a vector. For example, the sum of two vectors is a vector, and
the time derivative of a vector is also a vector.

We should point out that the general displacement of a coordi-
nate system is composed of a translation as well as a rotation.
The reason that we referred only to rotations in the definition of a
vector is that translations have no effect on the components of a
vector. The sole exception is the position vector r, which is defined
with respect to a specific origin. The components of r transform
under rotations according to Eq. (14.1), but r can be distinguished
from true vectors such as F and v by its transformation properties
under translation. We can distinguish between true vectors, posi-
tion vectors, and other mathematical entities by investigating how
they behave under all possible transformations.

Rotation about the z axis
Equation (14.1) is completely general, but usually it is convenient
to work with a special case such as a rotation of coordinates through
angle $ around the z axis, as shown in the sketch. We have

1) = COS <£>

j ) = s in <1>

k) = 0

0'
<r
(Y

• 1) = —sin $

• j) = cos $

• k) = 0

(k;-

(k' •

(kr-

0
J)

k)

= 0

= 0
= 1
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\

\

x' = a + b = x cos $ + y sin $

Hence the components of any vector A = (Ax,Ay,Az) must trans-

form according to the relations

A'x = Ax cos <£ + Ay sin $

Ly = —Ax sin cos 14.2

For example, let A = r = (x,y,z). Then

x' — x cos <i> + y sin $

y' = — zsin $ + i/cos $

z' =z.

"x These relations can be independently verified from the geometry.

The drawing shows how the x1 coordinate of point P is related

to the coordinates (x,y).

z,z

Example 14.1 Transformation Properties of the Vector Product

In Chap. 1 we gave an essentially geometrical definition of the vector
product. To demonstrate our new definition of a vector we shall prove
that the components of the vector product transform as the components
of a vector. For simplicity, we consider two coordinate systems, x, y, z
and x', y', zr, which differ by a rotation through angle $ around the z
axis, and two vectors A and B in the x, y plane. From the definition of
vector product we have

c = A X B =

In the x, y, z

cx
Cy

c,
and

= 0

= 0

= AxBy -

in the x'

i

Ax

Bx

system

- AVBX

J

Ay
By

the

k
0
0

=
V

A'x
B'x

components

y', z' system they are

r
B'

of C

k'
0
0

are

1 — A1R' — A ' Rr

la

16

\c

la

26

2c

If C is a vector, its components must obey the transformation law, Eq.
(14.2):

Cx = Cxcos<i> + Cysin<i>

Cr
y = -Cx sin $ + Cv cos

C'z = Cz.

3a

36

3c
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Equations (3a) and (36) are identically satisfied by Eqs. (1) and (2). To
prove Eq. (3c), we need to show that Af

xB'y - Ar
yB

r
x = AxBy - AyBx.

From Eq. (14.2) we have

A'x = A x cos <t> + A y sin <£

A y = — A x sin $> + A y cos $

B'x = £xcos<i> + £ysin<i>

Bf
y = - £ x s in<f> + By cos <$>.

Hence,

A'xB'y - A'yB'x = (Ax cos $ + Ay sin <1>)(-£X sin $ + By cos <£)
- ( - A x sin <f> + Ay cos <£>)(£* cos <£> + 5 y sin <l>)

This proves that all three components of the vector product trans-
form like the components of a vector so that the vector product is, in
fact, a vector.

Example 14.2 A Nonvector

To give a counterexample to the cross product, suppose that we try to
introduce a new type of vector multiplication, the vector "double cross"
product C = A X X B defined by

cx
Cy

cz

= AVBZ H
= AZBX H

= AxBy -

V AzBy

V AXBZ

V AyBx.

Is C actually a vector?
If we again take the case A = (.4x,^4y,0), B = (Bx,By,0), we have

Cy = 0

Cz = AxBy + AyBx.

In the x\ y', zf system the components are

C'x = A'yB
r
z + A'zB'y = 0

Cy = A'XB'Z + A'JB'X = 0

C'z = Af
xBy + AyBx.

The first two equations obey the transformation rule, Eqs. (3a) and
(36) of Example 14.1. However, when we evaluate the last equation we
find that

C'z = (Ax cos $ + Ay sin <&)(-Bx sin $ -f- By cos 3>)
+ ( — Ax sin $ + Ay cos $)(BX cos $ + By sin <£)

= (AxBy + ^ l ^ X c o s 2 $ - sin2 <l>) - 2(^XBX - AyBv) cos $ sin $.
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It is apparent that C'z ^ Cz, so that Eq. (3c) of Example 14.1 is not satis-
fied. The elements generated by the double cross product are not the
components of a vector, and the double cross product is a useless
operation.

Invariants of a Transformation

Any quantity which is unchanged by a general coordinate trans-
formation is called an invariant of the transformation. Invariants
play an important role in physics. They are the only entities suita-
ble for the construction of physical laws, since the principle of
relativity requires that the results of physical theories be inde-
pendent of the choice of coordinate system (provided, of course,
that the system is inertial).

We have so far encountered two classes of invariants—scalars
and vectors. Scalars are single numbers and are unaffected by
the choice of coordinates. Vectors are invariant under rotations
of the coordinates by construction; we designed the transformation
rule, Eq. (14.1), to assure this.

Any mathematical entity which is invariant under a rotation of
coordinates is called a tensor. A scalar is a tensor of zeroth rank,
and a vector is a tensor of the first rank. Tensors of higher rank
also exist; the moment of inertia introduced in Chap. 7 is a tensor
of the second rank.

The Transformation Properties of Physical Laws

We have used vector notation wherever possible because of its
simplicity; one vector equation is easier to handle than three scalar
equations. However, from the point of transformation theory,
vectors have a deeper significance. Since we must be able to use
any coordinate system we choose for describing physical events,
it is essential that we be able to write physical laws in a form inde-
pendent of coordinate systems. Thus, if an equation represents
a statement of a physical law, both sides of the equation must
transform the same way under a change of coordinates. For
example, consider the equation for motion along some axis j:
Fj = maj. Assuming m is a scalar, ntty must be a component of
a vector, since acceleration is a vector. Thus, F3 is a component
of a vector along the same axis, and the general form of the equa-
tion must be F = ma. Once the law is in vector form, we can
easily find the motion along any set of axes we choose. From this
point of view, the vector nature of force, including the rule for
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superposition of forces, is a mathematical consequence of the
requirement that the laws of motion be valid in all inertial systems.

The question arises as to whether the law of superposition of
forces is a physical law or simply a mathematical result. It is, in
fact, both. Experimentally, we find that the translation of a body
can be described by only three independent equations, one for
each coordinate axis; this implies that force has three independent
components. According to transformation theory, the only three
component entity suitable for describing physical laws is a vector,
and vectors obey the law of superposition.

Scalar Invariants

We can use the dot product to combine two vectors to form a
scalar. Since scalars are independent of the coordinate system,
the dot product of two vectors is called a scalar invariant

Let us show explicitly that the dot product A • B is a scalar
invariant under rotations. Considering a rotation about the z axis
for simplicity, we use Eq. (15.2) to obtain

A'X + A'X + AX =
(Ax cos <f> + Ay sin $)(BX cos <i> + By sin <£)

+ (—Ax sin $ + Ay cos $)
(-Bx sin <i> + Bv cos 3>) + (AtBz)

= AXBX + AyBy + A,BZ.

In particular, the dot product of a vector with itself, called the
norm of the vector, is a scalar invariant:

A'x
2 + A'y

2 + A'z
2 = A2 + Ay' + A2.

The norm of the position vector r changes under a translation of
coordinates but is invariant under pure rotations. We can use
this to define a rotation of coordinates: it is any transformation
which leaves r2 = x2 + y2 + z2 invariant.

14.3 Minkowski Space and Four-vectors

As we have discussed, it must be possible to express the laws of
classical physics using entities like scalars and vectors, which are
invariant under rotations of the coordinates x, y, z. From the
mathematical point of view the Lorentz transformations have much
in common with a spatial rotation: they are both linear transforma-
tions from one set of coordinates to another.
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CHANGE OF COORDINATES CHANGE OF COORDINATES
UNDER A ROTATION UNDER LORENTZ TRANSFORMATION

x' — x cos $ -\- y sin $ x1 = yx — yvt

yr = —x sin <1> + y cos <l> y' = y

z' = z z' = z

(f = t) tf = -(yv/c2)x + yt

Our object in this section is to find a way to write physical laws so
that they are invariant under the Lorentz transformations. This
assures that the laws will have the same form for observers in all
inertial frames as required by the first postulate of relativity.

We shall start from the observation made in 1908 by the mathe-
matician Minkowski that, with a slight change of notation, the
Lorentz transformations represent a rotation in a four dimensional
space. To introduce his line of reasoning, we return to the second
postulate of relativity: the speed of light is the same for observers
in all inertial frames. Consider two inertial systems x, y, z, t and
x', y', zf, t' moving with relative speed v in the x direction. If
their origins coincide at t = 0 and a short light pulse is sent out
from the origin at that instant, the locus of the pulse in the x, y,
z, t system is r = ct, or

X2 + y2 + Z2 = ( d ) 2 f

while in the x', y', z', t' system it is

xn + y'2 + z'2 = (ct')\

Comparing, we see that the quantity x2 + y2 + z2 - (ct)2 is equal
to zero in each coordinate system; it appears to be a scalar invariant
under the Lorentz transformations. We can show this directly by
employing the Lorentz transformations, Eq. (11.3):

/ vx\2

x'2 + y'2 + z12 - (ct')2 = y\x - vt)2 + y2 + z2 - y2c2 It )

- v2/c2

- c2t2 ( 1 - -) I + y2 + z2

= x2 + y2 + z2 - (ct)2. 14.3

In ordinary three dimensional space, the only transformation
that leaves x2 + y2 + z2 unchanged is a rotation. Minkowski con-
sidered a four dimensional space with coordinates xi, X2f X3, x±,
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where x\ = x, x2 = y, z3 = zand xA = ict(i2 = — 1). With these
coordinates,

x2 + y2 + z2 - (cf)2 = xx2 + x2
2 + xz2 + xA

2

and Eq. (14.3) can be written

x[2 + x'2
2 + x'i + x2 = x,2 + xo2 + xs2 + x,2.

It is apparent that xx
2 + x2

2 + x3
2 + x±2 is invariant under Lorentz

transformations; by analogy with the three dimensional case, the
Lorentz transformations represent a rotation of coordinates. The
analogy also suggests that x1} x2, xZj XA are the components of a
true four dimensional vector.

The transformation rules for {xi.x^x^x^ = (x,y,z,ict) are readily
obtained from the Lorentz transformations.

x2 =
2*3 =

x[ =

where p = v/c. (As usual, to simplify the algebra we restrict our-
selves to systems whose relative motion is in the x direction.) It
follows that any true four dimensional vector must transform in
the same fashion. Such vectors are known as four-vectors. Thus
the transformation rule for a four-vector A = (A1,A2,A3tA4) is

A[ = y(Al + ifiAd

K = Az

A\ = 7(^4 - H3A0.

As we expect, the norm of A is a Lorentz invariant.

A'2 + A'2 + A'2 + A'l = A,2 + A2
2 + A3

2 + A,2.

The factor of c gives A4 the same dimensions as the other com-
ponents. From Eq. (14.4), we see that if Ai is a real number, AA

must be imaginary, as in the four-vector s = (x,y,z,ict). The fact

that the fourth component is imaginary arises from the essential
difference between space and time.

In Minkowski's formulation of relativity, an event specified by
x, y, z, t is viewed as a point xu x2, x3, XA in space-time. Minkowski
called the four dimensional space-time manifold "world," although
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it has come to be called Minkowski space. A point in Minkowski
space is called a world point. As a particle moves in space and
time its successive world points trace out a world line.

The location of a world point is specified by its position four-vector

The Lorentz transformations, which relate an event in different
coordinate systems, represent a transformation of the components
of s from one coordinate system to another.

The displacement between two world points is

As = (Ax, Ay, Az, ic At)

or, in differential form,

ds = (dx, dy, dz, ic dt).

Since ds is a four-vector, its norm is a Lorentz invariant. The

norm is

ds2 = dx2 + dy2 + dz2 - c2 dt2.

A related Lorentz invariant that will be useful to us is dr2 = —ds2/c2.

dr2 = dt2 - -9 (dx2 + dy2 + dz2)
c2

dr has a simple interpretation. Consider a displacement ds

between two world points of a moving particle. In the rest frame
of the particle, the space coordinates are constant, and therefore
dx = dy = dz = 0. Thus dr = dt in the rest frame; the world
points are separated only in time, dr is the time interval measured
in the rest frame, and for this reason r is known as the proper
time.

Example 14.3 Time Dilation

We rederive the Einstein time dilation formula to show the power of
four-vectors.

Consider an observer at rest in the x', y', z', t' system. In this sys-
tem, the proper time interval between two world points is dr = dt'. In
the x, y, z, t system moving with velocity v relative to the first frame,

the interval between the same points is given by

dt2 - - (dx2 + dy2 + dz2).
c2
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Since dr2 is a Lorentz invariant, its value for the same world points is
the same in all frames. Hence, we can equate its value in the rest
frame to its value in the second frame.

dt'* = dt2 - \ (dx2 + dy2 + dz2)

or

(dt'\ 1 \(dx\ (dy\ fdzVl

Since (dx/dt)2 + {dij/dtf + (dz/dt)2 = v\ we have

dt

or

dt = — . = 7 dr.
V I - v2/c2

In contrast to the derivation of Sec. 13.3, this treatment avoids hypo-
thetical experiments and discussions of simultaneity.

Example 14.4 Construction of a Four-vector: The Four-velocity

In ordinary three dimensional space, dividing a vector by a scalar (a
rotational invariant) yields another vector. Similarly, dividing a four-
vector by a Lorentz invariant yields another four-vector.

Consider the displacement four-vector

ds = (dx, dy, dz, ic dt).

Dividing by the Lorentz invariant dr, we obtain a new four-vector

ds

IT

By analogy with the three dimensional case, we call ds/dr the four-

velocity u.

In the rest frame of the particle, dx = dy = dz = 0, and dr = dt.
For a particle at rest

u = (0, 0, 0, ic). 2

The norm of u is (u)2 = — c2 and it has the same value in all frames.

Obviously the four-velocity u is very different physically from u, the

familiar three dimensional velocity.
We now wish to find an expression for the four-velocity of a moving

(dx dy dz . dt\l —, —, __, iC — j .
\dr dr dr dr/
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particle. Let the x, y, z, t system move with velocity — u relative to the
rest frame of the particle. Using the time dilation formula of Example
14.3, we can write

dt = y dr,

where dt is now the time interval in the moving frame. Using this in
Eq. (1),

(dx dy dz . \
\dt dt dt J

= 7("> ic),

where y = 1/Vl — u2/c2.

We shall use u in the next section to derive the momentum-

energy four-vector. However, we shall first demonstrate how to

transform a four-vector from one frame to another.

Example 14.5 The Relativistic Addition of Velocities

We can easily derive the formula for the relativistic addition of velocities
by transforming the four-velocity u = y(u,ic) into successive frames with

the aid of Eq. (14.4).
Consider a particle moving along the x direction of the x, y, z, t system

*" u with speed U. In this frame,

,UA) = T(U,0,0,ic),

where T = 1 / V l — U2/c2. Consider a second frame x\ y', z', t' mov-
ing along the x direction with speed v relative to the first frame. In
this frame, the four-velocity of the particle is

/ • t t i f\ur = (ultu2tUz,uA)

-x' where yf = 1 / V l — u'2/c2. u' is the speed of the particle in the x',
y', z', tf frame.

From the transformation rule, Eq. (14.4), and using U\ = TU, u% = 0,
Uz = o, 2/4 = iTc,

ui = 7(^i + iffut) = yT(U — v)

u2 = u2 = 0

u\ = u% — 0

= iyT (c - —j = icyT (l - ^ -
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where y = l / \ / l — v2/c2 and fi = v/c. Hence,

u' = y'(u',ic)

- v,0,0,ic(l - V-^f\\

Equating components,

y'u' = yT(U - v)

and

Therefore,

u' = (yT/y'XU - v)

= U ~ v

~ 1 - vU/c2'

which is Einstein's velocity addition formula for the case we are consid-
ering. The same procedure can be used to add nonparallel velocities.

14.4 The Momentum-energy Four-vector

In the last chapter we obtained expressions for the relativistic
momentum and energy by rather labored arguments based on a
hypothetical two body collision. In this section we shall obtain
the same results in a much more direct manner by simply con-
structing a momentum-energy four-vector. We shall also obtain
the relativistic expression for force, a difficult quantity to derive
by the methods of the last chapter.

Our starting point is the observation that the classical momentum
mou is not relativistically invariant since the classical velocity is not
a four-vector. However, we found the form of the four-velocity u

in Example 14.4. Since the rest mass m0 is a Lorentz invariant,
the product mou is a four-vector. It is natural to identify this with

the relativistic momentum, and we therefore define the four-
momentum

P = raou

= y(mou, imoc)

= (mu, imc)
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or

p = (p, imc). 14.5

Does the four-momentum obey a conservation law? Classically,
the rate of change of momentum Is equal to the applied force, so
that the momentum of an isolated system is conserved. However,
it is not obvious whether the four-momentum is similarly conserved
since we have not developed a relativistic expression for force.
Recall that we obtained the four-velocity by dividing ds by the

Lorentz invariant dr. Let us apply the same method to obtain
the "time derivative" of p, and then define this equal to the

four-force.

dr

F is known as the Minkowski force.

If dt is the time interval in the observer's frame corresponding
to the interval of proper time dr, then dt = 7 dr and we have

dp . d

In the classical limit, dp/dt = F. In order to conserve the momen-
tum of an isolated system, we retain the identification of force
with rate of change of momentum in all inertial systems. The
Minkowski force becomes

14.7

We have constructed F so that four-momentum is conserved

when the four-force is zero. Like all four-vectors, F is relativisti-

cally invariant; if it is zero in one frame, it is zero in every frame.
This assures us that if four-momentum is conserved in one inertial
frame, it must be conserved in all inertial frames.

To interpret the fourth, or timelike component of p = (p, imc),

we recall that classically F • u represents the rate at which work is
done on a particle. By the work-energy theorem, F • u = dE/dtt

where E is the total energy. With this inspiration, let us examine
F • u for a particle moving with velocity u. Since u = 7("» «0,

Fu = T
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Since the scalar product of two four-vectors is a Lorentz invariant,
we are free to evaluate it in any frame we please. Let us evaluate
F • u in the rest frame of the particle. In this frame, (dp/dt) • u = 0
since u = 0. We also have

d 2

dt

Hence

Fu -

or

Fu =

F-

d
dt

d

Jt

)

u =

me*

me2

d /
dt V

mou

( i -

= 0.

= 0

m0c
2

(du/dt)

M2/C2)!
n

— \J.

This relativistic result bears a close resemblance to the classical
relation F • u = dE/dt. We conclude that the relativistic equiva-
lent of total energy is

E = me2.

The four-momentum becomes

p = (p, imc) = \P'l— 14.8

p is often called the momentum-energy four-vector.

We can generate a Lorentz invariant by taking the norm of p.

E2

p . p = p2

Hence,

- c2) = -m0
2c2.

E2 = p2c2 + (m0c2)2,

a familiar result.
The Minkowski approach of generating four-vectors has led us

in a natural way to relativistically correct expressions for momen-
tum and energy. With this approach the conservation laws for
energy and momentum appear as a single law: the conservation



530 FOUR-VECTORS AND RELATIVISTIC INVARIANCE

of four-momentum. In relativity, momentum and energy are
different aspects of a single entity; this represents a significant
simplification over classical physics, where the concepts are essen-
tially unrelated.

We conclude this section with a few applications of the momen-
tum-energy four-vector.

Example 14.6 The Doppler Effect, Once More

We have derived the relativistic expression for the Doppler effect by two
different approaches: from a geometrical argument in Section 12.5 and
by a dynamical argument in Example 13.8. In this example we obtain
the same result by a third,, much simpler, approach—four-vector
invariance.

Consider a photon with energy E = hv and momentum hv/c traveling
—x in the xy plane at angle <f> with the x axis. The momentum in the x, y

system is p = (hv/c)(cos 0, sin 0, 0). The momentum-energy four-vector
is

l _ _ _ ^ _ _

hv ,
= — (cos 0, sin 0, 0, i).

c

In the x', yf system shown in the sketch, the four-momentum can
be written

hv'
p = — (cos 4>', sin <f>', 0, i) .

-* c

From Eq. (14.4) we have p[ = y[pA — i(v/c)pi]. Hence,

.hv' (.hv .vhv \

i — = 7 [i i cos <f> I
c \ c c c /

' 11 COS 0 I
\ c /

yv |

or

7 1 — (v/c) cos

v
1 — (v/c) cos 0

identical to our earlier result, Eq. (12.7).
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Example 14.7 Relativistic Center of Mass Systems

The center of mass system we used in Chap. 4 to analyze collision prob-
lems is the coordinate system in which the spatial momentum is zero.
In this example, we shall find the relativistic transformation from the
laboratory system to the zero momentum frame.

Consider a collision between two particles with rest masses 71/1 and
M2. Let particle 1 be moving with velocity u in the laboratory system and
particle 2 be at rest. The momentum-energy four-vector of each par-
ticle is

The total momentum-energy is

In a frame moving along the x axis with speed V the spatial components
of P are, by Eq. (14.4),

where V = 1 /Vl - V2/c2.
In the center of mass system, P' = 0. From Eq. (2) we see that the

speed of this frame with respect to the laboratory frame is

V = —- 3

The energy available for physical processes such as the production of
new particles or other inelastic events is the total energy in the center
of mass system E'. In the center of mass frame, the momentum-energy
four-vector is

We can find E' by using the invariance of the norm of P. From Eqs.

(1) and (4),

E'2 (Ex + E2)*
= p2

c2

= pi2

c2 F c2
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or

E'2 = (il/lC
2)2 + 2E,E2 + E2

2,

where we have used pi2c2 = E\2 — (M\c2)2. For our problem, E\ =

7^/ic2 and E2 = M2c
2, where 7 = 1 / V l - w2/c2. Hence,

#' = (M,2 + il/2
2 + 2yM iM2)h

2. 5

The total energy in the laboratory system is

E = (yMi + M2)c\ 6

and the fraction of the initial energy available for physical processes is

An important practical case is that of equal masses M\ = M2. Equa-
tion (7) becomes

In the low velocity limit, 7 = 1 and E'/E = 1. At low speeds, most of
the energy is in rest mass energy and kinetic energy is relatively unim-
portant. To discuss the high-speed limit, it is convenient to write Eq.
(8) in terms of the projectile energy Ex = yMc2.

E' _ \/2

E Vl + Ex/M~?

For Ei y> Me2, we have

The useful fraction of energy decreases as ErK For example, the pro-
ton synchrotron at the National Accelerator Laboratory in Batavia, Illinois,
can accelerate protons to an energy of 300 GeV (1 GeV = 109 eV). Since
the rest mass of the proton is about 1 GeV, we see that for protons collid-
ing with a hydrogen target, E'/E'~ V3 / \ /200 ~ 0.1. Only 30 GeV is
available for interesting experiments.

By using identical beams colliding head on, the laboratory frame
becomes the center of mass frame, and the total energy is available for
inelastic events. This technique of colliding beams has been used
extensively in electron accelerators and has proved feasible in proton
machines as well.
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Example 14.8 Pair Production in Electron-electron Collisions

In Example 13.7 we analyzed pair production, the process by which a
photon collides with an electron to create an electron-positron pair.
The threshold energy for the process was found to be E = 2m0c

2 = 1.02
MeV, where m0c

2 = 0.51 MeV is the rest energy of the electron or positron.
A related process is the production of an electron-positron pair by the

collision of two electrons:

The reaction evidently satisfies conservation of charge. The problem is
to find the threshold energy for the process.

To describe the dynamics of the problem we introduce the following
four-momenta:

Pi: electron 1 before the collision

p2: electron 2 before the collision

p3: electron 1 after the collision

p4: electron 2 after the collision

p5: electron created in e~-e+ pair

p6: positron created in e~-e+ pair

Then conservation of four-momentum gives

Pi + P2 = P3 + P4 + P5 + P6-

Squaring, we have

(Pi + P2)2 = (Ps + P4 + P5 + Pe)2. 1

Since each side of the equation is Lorentz invariant, we can compute the
terms in whatever reference frame is most convenient.

Let us compute the left hand side of Eq. (1) in the laboratory frame.
Taking particle 2 to be initially at rest, we have

P2 = (O,imoc)

and

(Pi + P2)2 = Pi2 + P22 + 2p! - p2

= -2(m0c)2 - 2m0Ei, 2

where we have used p2 = p2 — E2/c2 = —m0
2c2, valid for any particle.
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The right hand side of Eq. (1) is most conveniently calculated in the
center of mass frame. At threshold, all four particles are at rest. (This
minimizes the energy and is consistent with the requirement that the
total spatial momentum be zero in the center of mass frame.) Hence
P3» P4r Ps, Pe all have the form (0,0,0,m0c), and the right hand side of

Eq. (1) becomes

(0,0,0, Aimoc)2 = -16(ra0c)2 . 3

Substituting Eqs. (2) and (3) in Eq. (1) gives

- 2 ( m 0 c ) 2 - 2rao#i = -16(ra0c)2

or
Ex = 7m0c

2.

Ei includes the rest energy of the projectile, so that the kinetic energy
of the projectile at threshold is

Kx = Ei - m0c2

The argument here can be applied to the production of other particles,
for instance, to the production of a negative proton in the reaction

P+ + P+ -> P+ + P+ + (P+ + P~).

Since the proton rest mass is 0.94 GeV, the threshold kinetic energy for
the production of negative protons is 6(0.94) GeV = 5.64 GeV. The
Bevatron at the Lawrence Radiation Laboratory, Berkeley, California,
was designed to accelerate protons to 6 GeV to allow this process to be
observed. Owen Chamberlain and Emilio Segre received the Nobel Prize
in 1959 for producing negative protons, or antiprotons.

14.5 Concluding Remarks

The special theory of relativity, far from representing a complete
break with classical physics, has a heavy flavor of newtonian
mechanics in its insistence on the equivalence of inertial frames.
Essentially, Einstein generalized the work of Newton by bringing
classical mechanics into accord with the requirements of electro-
magnetic theory.

Fundamentally, however, the emphases of special relativity are
not the same as those of newtonian physics. Einstein's rejection
of unobservable concepts like absolute space and time and his
insistence on operational definitions related to observation were
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much more far-reaching than were Newton's efforts in this direc-
tion. Einstein laid the groundwork for the analysis of observables
which was essential in the development of modern quantum
mechanics. In addition, he made significant contributions to our
philosophical understanding of how man obtains knowledge of the
world.

As we have seen in this chapter, one of Einstein's great contri-
butions was recognition of the power of transformation theory
as an organizing principle in physics. Transformation theory uni-
fies and simplifies the concepts of special relativity and has served
as a knowledgeable guide in the search for new laws.

However, in spite of its power and harmony, special relativity is
not a complete dynamical theory since it is inadequate to deal with
accelerating reference frames. To Einstein this was a fundamen-
tal defect. According to Mach's principle of equivalence it is
impossible to distinguish locally between an inertia! system in a
gravitational field and an accelerating coordinate system in free
space. Therefore, by the principle of relativity, the frames must
be equally valid for the description of physical phenomena. Since
special relativity is incapable of dealing with accelerating reference
frames, it is inherently incapable of dealing with gravitational fields.

Einstein went far toward removing these difficulties with his
general theory of relativity, published in 1916. The general theory
deals with transformations between all coordinate systems, not
just inertial systems. It is essentially a theory of gravitation, since
it is possible to "produce" a gravitational field merely by changing
coordinate systems. From this point of view the effect of gravity
is regarded as a local distortion in the geometry of space. Even
in the gravitational field of the sun, however, effects attributable
to general relativity are small and difficult to detect. For example,
the deflection of starlight by the sun, one of the most dramatic
effects predicted, amounts to only 1.7 seconds of arc.

General relativity's greatest impact has been on cosmology, since
gravity is the only important force in the universe at large. Its
role in terrestrial physics has been minor, however, partly because
the effects are small and partly because so far it has not been
extended to include electromagnetism. In contrast, special rela-
tivity has a multitude of applications and is part of the working
knowledge of every physicist.

Einstein's impact on the twentieth century is difficult to assess in
its entirety. He altered and enlarged our perceptions of the
natural world, and in this respect he ranks among the great figures
of Western thought.
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Problems 14.1 A neutral pi meson, rest mass 135 MeV, decays symmetrically into
two photons while moving at high speed. The energy of each photon in
the laboratory system is 100 MeV.

a. Find the meson's speed V. Express your answer as a ratio V/c.

b. Find the angle 6 in the laboratory system between the momentum
of each photon and the initial line of motion.

Ans. 6 « 51°

14.2 A high energy photon (7 ray) collides with a proton at rest. A
neutral pi meson (TT°) is produced according to the reaction

7 + V -* V + ir°-

What is the minimum energy the 7 ray must have for this reaction to
occur? The rest mass of a proton is 938 MeV, and the rest mass of a
TT° is 135 MeV.

Ans. Approximately 154 MeV

14.3 A high energy photon (7 ray) hits an electron and produces an
electron-positron pair according to the reaction

What is the minimum energy the 7 ray must have for the reaction to
occur?

14.4 A particle of rest mass M spontaneously decays from rest into two
particles with rest masses m\ and m2. Show that the energies of the
particles are

Ei = (M2 + W12 - m2
2)c2/2M E2 = (M2 - mx

2 + m2
2)c2/2M.

14.5 A nucleus of rest mass M^ moving at high speed with kinetic energy
Ki collides with a nucleus of rest mass M2 at rest. A nuclear reaction
occurs according to the scheme

nucleus 1 + nucleus 2 —> nucleus 3 + nucleus 4.

The rest masses of nuclei 3 and 4 are M3 and M*.
The rest masses are related by

(M 3 + M 4)c
2 = (M, + M 2)c

2 + Q,

where Q > 0. Find the minimum value of K\ required to make the reac-
tion occur, in terms of M i , M2, and Q.

Ans. clue. If M1 = M2 = Q/c2, then Kx = 5Q/2

14.6 A rocket of initial mass Mo starts from rest and propels itself for-
ward along the x axis by emitting photons backward.

a. Show that the four-momentum of the rocket's exhaust in the initial
rest system can be written
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where Mf is the final mass of the rocket. (Note that this result is valid
for the exhaust as a whole even though the photons are Doppler-shifted.)

b. Show that the final velocity of the rocket relative to the initial frame
is

x2 - 1
V = ~2 °>
where x is the ratio of the rocket's initial mass to final mass, MQ/M/.

14.7 Construct a four-vector representing acceleration. For simplicity,
consider only straight line motion along the x axis. Let the instantaneous
four-velocity be u.

Ans. clue, norm = a2 / ( l — u2/c2)3, where a = du/dt

14.8 The function f(x,t) = A sin 2ir[(x/\) — vt] represents a sine wave
of frequency v and wavelength X. The wave propagates along the x
axis with velocity = wavelength X frequency = \v. f(x,t) can repre-
sent a light wave; A then corresponds to some component of the electro-
magnetic field which constitutes the light signal, and the wavelength and
frequency satisfy \v = c.

Consider the same wave in the coordinate system xf, y', z \ V moving
along the x axis at velocity v. In this reference frame the wave has the
form

f'(x',tf) = A' sin 2

a. Show that the velocity of light is correctly given provided that 1/X'
and v' are components of a four-vector k given in the x, y, z, t system by

b. Using the result of part a, derive the result for the longitudinal
Doppler shift by evaluating the frequency in a moving system.

c. Extend the analysis of part b to find the expression for the trans-
verse Doppler shift by considering a wave propagating along the y axis.
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Cosines, law of, 5
Cosmic ray, 512
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Derivative:

partial, 202
of a vector, 15, 23

Diatomic molecule, 179
Dicke, R. H., 354
Differentials, 45, 204
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relativistic, 493
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and work, 160
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Eotvos, R., 354
Equal areas, law of, 240, 382
Equilibrium, 175, 322
Equivalence principle, 346, 369
Erg, 185
Escape velocity, 157, 162
Ether, 446
Euler's equations, 320
Euler's theorem, 232
Event, 462
Exponential function, 44

Fictitious force, 62, 344
Field:

electric, 87
gravitational, 85
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FitzGerald, G. F., 450, 459
Fizeau, H. L.f 460, 475
Foot (unit), 67
Force, 58

conservative, 163
criteria for, 215

contact, 87
diagram, 68
electric, 86
fictitious, 344
of friction, 92
gravitational, 80
inertial (see Force, fictitious)
relativistic, 528
and transport of momentum,

139
units of, 67
vector nature of, 59, 524
viscous, 95

Foucault pendulum, 366
Four-momentum, 527
Four-vector, 525
Four-velocity, 525
Frequency, 411
Fresnal drag coefficient, 460
Friction, 92

coefficient of, 93
fluid, 95

Frisch, D. H., 469

g (acceleration of gravity), 83
variation with altitude, 83
variation with latitude

(problem), 374
G (gravitational constant), 80
Galilean transformations, 340, 453
Gas, pressure of, 144
General theory of relativity, 535
Gradient operator, 207, 210
Gram, 67
Grandfather's clock, 256
Gravitational mass, 81, 352
Gravitational red shift, 369
Graviton, 501
Gravity, 80

Gravity:
gravitational field, 85

of spherical shell, 101
and tides, 352
and weight, 84

Gyrocompass, 301
Gyroscope, 295, 328

nutation of, 331

Hall, D. B., 469
Halley's comet, 407
Harmonic oscillator, 410

damped, 414, 435
forced, 421, 436

Hertz, H., 502
Hertz (unit), 411
Hohmann transfer orbit, 408
Hooke, R., 97
Hooke's law, 97
Horsepower, 186
Hyperbola, 392

Impulse, 130
Inelastic collisions, 188
Inertia, 372
Inertial force (see Force,

fictitious)
Inertial mass, 81, 356
Inertial system, 55, 340, 455
Infinitesimal rotations, 322
Initial conditions, 99
International system of units, 67
Invariants, 520
Inverse square law:

electric, 86
gravitational, 80
motion under, 389

Joule, J. P., 185
Joule (unit), 156

Kater's pendulum, 258
Kaufmann, W., 23
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Kennedy-Thorndike experiment,
459

Kepler's laws, 240, 400
Kilogram, definition, 66
Kinematical equations, formal

solution, 19
Kinetic energy, 156

and center of mass motion, 264
in collisions, 188
of rotating rigid body, 313
of two-body system, 383

Lariat trick, 336
Laws of motion, 53
Length:

contraction of, 466
unit of, 66

Light:
electromagnetic theory of, 445
particle model of, 501
speed of, 445, 451

constancy of, 508
in moving medium, 451

Line integral, 159, 166
Linear air'track, 53
Linear restoring force, 97
Lorentz, H. A., 450, 457
Lorentz contraction, 466
Lorentz invariant, 487
Lorentz transformations, 455

and four-vectors, 523

Mach, E., 369, 443
Mach's principle, 369
Many-particle system:

angular momentum of, 305
momentum of, 113

Mascons, 390
Mass, 56

gravitational, 353
inertial, 353
relativists, 490
standard of, 66
unit of, 67

Maxwell, J. C, 445
Meson decay, 468
Meter (unit), 66
Metric system, 67
Michelson, A. A., 445, 448
Michelson-Morley experiment,

445
Millikan, R. A., 502
Minkowski force, 528
Minkowski space, 521
mks system of units, 67
Molecule, diatomic,-179
Moment of inertia, 249, 309

and parallel axis theorem, 252
and principal axes, 313

Momentum, 112
angular (see Angular

momentum)
conservation of, 122, 490, 529
and the flow of mass, 133
relativistic, 490
transport, 139

Momentum-energy four vector,
527

Morley, F. W., 450
Motion, 19

in accelerating coordinate
system, 347

circular, 17, 25, 34
in conservative systems, 168
laws of, 53
in nonconservative systems,

182
in plane polar coordinates, 27
relation to acceleration, 20
on rotating earth, 368
along a straight line, 34
in uniform gravitational field,

21
Muon decay, 468

Neutino, 501
Newton, I., 52, 353, 368, 442
Newton (unit), 67
Newton's law of gravitation, 80
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Newton's laws of motion, 52ff.,
442

first law, 55
second law, 56
third law, 59

Nonconservative force, 182
Normal force, 92
Nutation, 332

Operational definition, 57
Orbital angular momentum, 262
Orbits, 382

bounded, 386
elliptic, 394
hyperbolic, 393
under inverse square force, 385
perturbed, 388

Pair production, 505, 533
Parabola, 392
Parallel axis theorem, 252
Partial derivatives, 202
Pendulum:

inverted, 164
Kater's, 258
physical, 257
simple, 255

period versus amplitude, 256
Perigee, 396
Period of motion, 411
Perturbed orbit, 388
Phase, 411
Photoelectric effect, 502
Photon, 501

rest mass of, 512
Physical pendulum, 257
Planck, M., 272
Planets:

motion of, 390
orbits of, table, 395
perturbation of, 391

Polar coordinates, 27
acceleration in, 36
velocity in, 30

Pole vaulter paradox, 486
Potential energy, 168

effective, 385
gradient of, 211
relation to force, 173, 206, 214
surface, 211

Pound, R. V., 370
Pound,67
Power, 186
Precession:

of equinoxes, 300
of gyroscope, 296, 331
torque-free, 317, 331

Pressure of a gas, 144
Principal axes, 313
Principia, 440, 452n.
Principle of equivalence, 346, 369
Principle of relativity, 451
Principle of superposition, 58
Products of inertia, 309
Proper time, 468, 524
Pulleys, 90
Pulsar, 510

Q (quality factor), 418

Radiation pressure, 502
Radius of gyration, 257
Reduced mass, 179, 191, 379
Relative velocity, 48
Relativity:

general theory, 535
special theory, 450

Resonance, 423
curve, 427

Rest energy, 491
Rest mass, 491
Rigid body motion, 288, 308
Rocket, 136

relativistic, 536
Rossi, B., 465
Rotating bucket experiment, 368
Rotating coordinate system, 355



INDEX 545

Rotating coordinate transforma-
tion, 371

Rotating vectors, 25, 294, 297
Rotations, noncommutativity of,

285, 322
Rutherford, E., 271

Satellite orbit, 396
Scalar, 308, 520

invariants, 521
Scalar product, 5
Second, definition of, 66
Segrg, E.f 534
Series:

binomial, 41
Taylor's, 42

SI (international system of units),
67

Simple harmonic motion, 97,154,
410

Simple pendulum, 255
Simultaneity, 463
Skew rod, 292-294, 312
Slug (unit), 67
Small oscillations, 178
Smith, J. H., 469
Spacelike interval, 466
Special theory of relativity, 451
Spaed of light:

in empty space, 445
in a moving medium, 474

Spin angular momentum, 262
Stability, 174

of rotating objects, 304, 322
Standards and units, 64
Stokes' theorem, 225
Superposition of forces, 58, 82
Synchronous satellite, 104
System of units, 67

Tangential acceleration, 36
Taylor's series, 42
Teeter toy, 175,181

Tension, 87
and atomic forces, 91

Tensor, 520
Tensor of inertia, 311
Thomson, J. J., 271
Tide, 348
Time, 44

dilation, 468, 524
unit of, 66

Time constant, 418
Timelike interval, 466
Torque, 238
Torque-free precession, 317, 324
Total mechanical energy, 169
Trajectory, 21
Transformation properties:

of a four-vector, 523
of physical laws, 520
of a vector, 516

Transformations:
Galilean, 340, 453
Lorentz, 455, 523

Twin paradox, 480

Uniform precession, 296
Unit vectors, 3,10
Units, 18, 67
Universal gravitation, 80

constant of, 81

Vector operator, 207
Vectors, 2

addition, 4
and area, 7
base vectors, 10, 28
components, 8
derivative of, 15, 23
displacement vector, 11
four-dimensional, 523
multiplication: of cross

product, 6
of scalar (dot) product, 5

orthogonal, 10
position vector, 11
rotating, 25



546 INDEX

Vectors:
subtraction, 4
transformation properties of,

516
unit, 3

Velocity, 13
angular, 289
average, 13
four-, 525
in polar coordinates, 30
radial, 33
relative, 48
relativistic transformation of,

472, 526
tangential, 33

Vibration eliminator, 427
Viscosity, 95

Walton, E. T. S., 498
Watt (unit), 186
Weather systems, 364
Weight, 68, 84
Work, 156, 160
Work-energy theorem, 160

in one dimension, 156
for rotation, 267

Work function, 502
World line, 524
World point, 524
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